
ORNL/TM-2018/1073

Omnibus User Manual

Approved for public release.
Distribution is unlimited.

Seth R. Johnson
Thomas M. Evans
Gregory G. Davidson
Steven P. Hamilton
Tara M. Pandya
Katherine E. Royston
Elliott D. Biondo

Aug. 2020

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website classic.ntis.gov

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website osti.gov/contact

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

ORNL/TM-2018/1073

Reactor and Nuclear Systems Division

OMNIBUS USER MANUAL

Seth R. Johnson
Thomas M. Evans

Gregory G. Davidson
Steven P. Hamilton

Tara M. Pandya
Katherine E. Royston

Elliott D. Biondo

Date Published: Aug. 2020

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

Contents . iii
List of Figures . v
List of Tables . vii
Abstract . 1
1. Introduction . 1

1.1 Omnibus execution . 1
1.2 Python bindings . 2
1.3 Post-processing tools . 2

2. Front End Interface . 5
2.1 Running Omnibus . 5
2.2 Omnibus ASCII Input Format . 7
2.3 Omnibus input and output . 10
2.4 Errors, warnings, and other messages . 13
2.5 Command line tools . 15

3. Omnibus Input Description . 25
3.1 Omnibus input file contents . 25
3.2 Problem attributes: [PROBLEM] . 27
3.3 Execution: [RUN] . 29
3.4 Output options: [OUTPUT] . 39
3.5 Model definition: [MODEL] . 43
3.6 MCNP input: [MODEL=mcnp] . 44
3.7 SCALE input: [MODEL=scale] . 50
3.8 Geometria input: [MODEL=geometria] . 52
3.9 Reactor ToolKit input: [MODEL=rtk] . 53
3.10 Brick mesh input: [MODEL=mesh] . 53
3.11 Geant4 input: [MODEL=geant] . 54
3.12 SWORD input: [MODEL=sword] . 54
3.13 DAGMC input: [MODEL=dagmc] . 55
3.14 VERA input: [MODEL=vera] . 56
3.15 Particle source definitions: [SOURCE] . 56
3.16 Physics engines: [PHYSICS] . 85
3.17 Continuous-energy physics: [PHYSICS=ce] . 85
3.18 Multigroup physics: [PHYSICS=mg] . 96
3.19 Compositions: [COMP] . 106
3.20 Responses: [RESPONSE] . 111
3.21 Tallies: [TALLY] . 113
3.22 Shift Monte Carlo solver: [SHIFT] . 167
3.23 Denovo deterministic solver: [DENOVO] . 176
3.24 ORIGEN depletion solver: [DEPLETION] . 212
3.25 Hybrid methodology: [HYBRID] . 224
3.26 Pre-execution utilities: [PRE] . 227
3.27 Post-processing: [POST] . 229

4. Geometria Input Description . 233
4.1 Geometria input file contents . 233
4.2 Universe definitions: [UNIVERSE] . 234
4.3 Shape definitions: [UNIVERSE][SHAPE] . 246

iii

References . 267
5. Acknowledgments . 269
A. Examples . A–2

A.1 Visualization . A–3
A.2 Denovo . A–9
A.3 Multigroup data exploration .A–91
A.4 Shift .A–103
A.5 CE data .A–132
A.6 Supplemental .A–152

B. File format specifications . B–2
B.1 Denovo Output Specification . B–3
B.2 HDF5 Mesh Model Specification . B–4
B.3 RTK XML Input Specification . B–5
B.4 XS XML Input Specification . B–5

iv

LIST OF FIGURES

1 Execution flow for omnibus-run. The small black boxes are the typical input/output files,
blue circles are parts of the Python pre-processor run on the head node, the red circle is the
Omnibus executable (run on the compute nodes), and dotted lines denote optional files (e.g.,
multiple input files). 11

v

LIST OF TABLES

1 Special characters in Omnibus input. 8
2 Omnibus diagnostic output examples. 14

3 Available types for the [RUN] database . 29
4 Feature matrix for the supported models. 43
5 Available types for the [MODEL] database . 44
6 Mappings between unusual nuclide IDs. 45
7 Mappings between MCNP MT cards and SCALE IDs. 46
8 Available types for the [MOVABLE] database . 49
9 MOAB volume properties used in the DAGMC model. 55
10 Available types for the [SOURCE] database . 57
11 Available types for the [SHAPE] database . 66
12 Available types for the [ENERGY] database . 66
13 Available types for the [ANGLE] database . 66
14 Available types for the [SPECTRUM] database . 66
15 Available types for the [PHYSICS] database . 85
16 SCALE CE library path aliases in SCALE 6.2. 86
17 Default DBRC data paths in SCALE 6.2. 88
18 Available types for the [SPLICE] database . 93
19 Multigroup physics library aliases and filenames in SCALE 6.2. 99
20 Possible cross section input formats. 104
21 GIP reaction tables. 105
22 Available types for the [RESPONSE] database . 111
23 Available types for the [DIAGNOSTIC] database . 140
24 Available types for the [OUTPUT] database . 166
25 Available types for the [DECOMPOSITION] database . 169
26 Available types for the [GENERATIONS] database . 175
27 Denovo spatial discretization options. 179
28 Available types for the [BOUNDARY] database . 183
29 Denovo quadrature construction options. 185
30 Denovo quadrature availability matrix. 185
31 Available types for the [SOLVER] database . 192
32 Denovo solver verbosity options. 198
33 Available types for the [PRECONDITIONER] database . 203
34 Available types for the [PRECONDITIONER] database . 204
35 Available types for the [PRECONDITIONER] database . 211
36 Available types for the [HYBRID] database . 224
37 Weight window input options. 226

38 Available types for the [UNIVERSE] database . 234
39 Available types for the [SHAPE] database . 246

vii

ABSTRACT

This manual provides instructions for using the Omnibus front end to the Exnihilo code suite, which contains
the Denovo and Shift transport solvers.

1. INTRODUCTION

Exnihilo is a modern radiation transport framework that implements state-of-the-art algorithms, solvers, and
solution methodologies, enabling it to solve a wide variety of nuclear engineering and applications problems
with the scalability to run on desktop machines and leadership-class supercomputers. The Omnibus code
[3] is a powerful, flexible interface to the extensive functionality of Exnihilo. This manual documents the
Exnihilo capabilities exposed by Omnibus and demonstrates their use.

Omnibus provides access to the two core Exnihilo transport solvers, the Denovo deterministic solver
(page 176) [4] and the Shift Monte Carlo solver (page 167) [5]. In addition, Omnibus allows the two
solvers to be coupled using modern hybrid methods (page 224) that accelerate Shift transport solutions using
approximate solutions from Denovo. Omnibus also allows time-dependent Shift depletion calculations using
the ORIGEN nuclide depletion solver (page 212) [6].

The Exnihilo transport framework is designed to support computational transport using a combination
of input models (page 43) (which define a problem’s geometry and compositions) and multiple physics
implementations (page 85) (which implement approximations to the Boltzmann transport equation). Many
classes of particle sources (page 56) and tallies (page 113) can be defined separately from the model’s
geometry, and custom compositions (page 106) can also be entered by the user.

The Omnibus interface enables other codes such as ADVANTG [7] and SWORD [8] to create, execute, and
post-process Denovo problems, but their use is outside the scope of this document. Other radiation transport
codes such as VERAShift [9] and SCALE [2] use the Shift and Denovo codes through a lower-level interface
via an internal Omnibus-based API. Although these codes are also outside the scope of this manual, the
features and some interfaces presented here may inform the use of downstream codes.

1.1 OMNIBUS EXECUTION

At its core, Omnibus is a high-performance, MPI-enabled binary executable, the input of which is a hierarchi-
cal problem definition. The Omnibus executable is designed to be launched by a driver, the omnibus Python
module, which generates a validated input for the executable before launching it in parallel.

Pre-execution validation, which can be run using the omnibus-pre (page 16) command, is critically important
for high-performance computing (HPC) systems in which tens or hundreds of thousands of CPU hours can
potentially be lost if an invalid input causes a single process to fail. It is also a tremendous time saver on
other shared computing resources such as institutional clusters, ensuring that the input does not need to be
queued and launched before it is validated. If a problem input is rejected, then the Python pre-processor can
also construct a descriptive, context-sensitive error message such as:

ERROR: From input at ueki-cadis.omn:19:
FATAL ERROR: In /physics/ce, the following unknown inputs were found: 'mood' (did you␣
↪→mean 'mode'?)

or

1

FATAL ERROR: At ueki-cadis.omn:21: Invalid value 'npe' for keyword 'mode' at /physics/ce/
↪→mode:
expected particle transport mode (``n``, ``neutron``, ``np``, ``p``, ``photon``, or␣
↪→``pn``), but string is not a particle mode
[mode: Particles to transport]:

npe

Besides validating the user input and providing error messages, the Python input schemas are also used to
generate the Omnibus (page 25) and Geometria (page 233) input specifications in this manual.

1.2 PYTHON BINDINGS

Exnihilo uses the SWIG1 utility to generate Python interfaces to utility classes in Exnihilo. These interfaces
power some Omnibus capabilities such as ray tracing, but they may also be used by power users as a high-level
interface to many core Exnihilo capabilities, including exploring nuclear data and interacting with problem
models.

The following Python modules are installed with Exnihilo2:

nemesis: Infrastructure components This collection of utilities includes interfaces to MPI and Silo.

robus: Physics data Robus has containers designed to load and store continuous-energy and multigroup
cross sections, nuclides, and compositions.

transcore: Transport core components This package includes cross section storage classes, libraries for
reading and writing cross sections, etc. See Multigroup data exploration (page A–91) for an example
of creating and visualizing multigroup cross sections.

geometria: Geometry interfaces This module has interfaces to the different geometry models used by Shift.
It enables ray tracing of the geometry and extraction of compositions.

physica: Physics packages The physics package includes additional interfaces to the CE data. See CE data
(page A–132) for examples.

1.3 POST-PROCESSING TOOLS

Several tools have been developed to support interacting with, processing, and visualizing Exnihilo input
and output. Most of the data are read from and written to HDF5 files, so the workflows rely heavily on the
Python-based h5py module.

1.3.1 OMNIBUS.DATA

The Omnibus data toolset is an h5py-based interface to Exnihilo HDF5 input and output files. It allows slices
of the data to be taken without loading the entire file into memory, and it includes plotting tools based on
matplotlib. For examples on how to use this module, see the Denovo (page A–9) and Shift (page A–103)
example sections.

Note: The full documentation of the postprocessing tools is outside the scope of this manual. However, if
you’re using IPython (e.g., through omnibus-analysis) or Jupyter notebook to postprocess the data, tab

1 http://sourceforge.net/projects/swig
2 SWIG Python bindings will only be available when Exnihilo is built with the SWIG option on and when installing shared

libraries.

2

http://sourceforge.net/projects/swig

completion on any of the Omnibus analysis objects will list the available methods for that object. Additionally,
adding a question mark symbol after a method or object will provide a help overview showing the arguments
that function expects. Finally, the help built-in function provides detailed information about available data
members and methods of any object.

1.3.2 [POST] BLOCK

When run through omnibus-run (page 15), the post-processing block in the Omnibus input will extract
specified data from the HDF5 output in a more human-friendly format. For example, this block will
generate an ReST-formatted text file summarizing the run, plot keff values for Shift eigenvalue problems,
and generate csv-formatted tables of depletion results. More advanced post-processing blocks such as
[DENOVO][SPECTRUM], which will write flux spectra at the given list of points, allow complex extraction of
user-specified data.

1.3.3 H5SH

The h5sh tool3 provides a shell-like interface to browsing HDF5 files. It can be independently downloaded
and installed through Python’s package manager (pip install h5sh).

It can be cumbersome to use the Omnibus python post-processing tools to quickly examine the contents of an
Exnihilo output (or input) file. Some developers have gotten into the habit of using h5ls and h5dump for
this, but those tools are impossibly slow for files greater than a few hundred megabytes, and it is inconvenient
and slow to use them for multiple consecutive invocations to drill down on a piece of data.

To this end, Exnihilo includes a small but powerful tool that allows the user to browse any HDF5 file as if it
were a directory in a shell terminal. HDF5 groups become directories and datasets act as files. It is designed
to be intuitive and straightforward. See Using the h5sh tool (page A–152) for an example of its use or the
online documentation4 for more details.

3 https://pypi.org/project/h5sh/
4 https://h5sh.readthedocs.io/

3

https://pypi.org/project/h5sh/
https://h5sh.readthedocs.io/

2. FRONT END INTERFACE

Your Exnihilo installation contains the omnibus executable (which actually drives Denovo and Shift from
an XML input file), as well as additional Python scripts that pre-process user input and program output. If
using an HPC cluster, then the pre-processing is typically performed on a login node, thus validating and
preparing the user input without making it necessary to wait for a job to queue (and without risking the waste
of compute hours due to an invalid input being encountered at runtime).

2.1 RUNNING OMNIBUS

The omnibus-run (page 15) script creates an Omnibus XML input file, drives and monitors the omnibus
(page 17) executable as it is being run, and post-processes the output.

Unlike most code drivers, omnibus-run is meant to be executed on the head node of a cluster rather than
on a compute node. Using a machinefile (if the [RUN=mpi] option is being used) or pbs submission (for
[RUN=pbs]), it is able to submit the job to other nodes and monitor the application process. To prevent a
terminal disconnect from stopping the monitoring (it will not stop the job), it is a good idea to use the screen5

utility.

Because the pre-processing, execution, and post-processing steps often generate a dozen files or so, it is
highly recommended to create a new working directory for every execution step. The Omnibus pre- and
post-processors always generate output in the working directory (as opposed to the directory where the input
resides), so a good workflow is

$ mkdir myrun; cd myrun
$ omnibus-run ../input.omn

This makes it easier to delete an entire run without accidentally deleting the input, and it also prevents
multiple simultaneous Omnibus runs from clobbering each others’ files.

Tip: For systems such as Titan that have special filespaces (Lustre) from which the code is executed, the
easiest way to ensure that all Omnibus I/O remains on that system is to leave the .omn input file on Lustre
and call omnibus-run from that directory.

2.1.1 EXAMPLE ON A LOCAL MACHINE

Suppose there is an input file, batman.omn, on a local machine:

[PROBLEM]
name Batman
description "Dark, brooding."

! -- snip -- !

[RUN=mpi]
np 4

If Omnibus is installed with MPI, then one can simply open a terminal and call:

5 https://kb.iu.edu/d/acuy

5

https://kb.iu.edu/d/acuy

$ omnibus-run batman.omn

This runs the following sequence:

1. The pre-processor will validate the input.

2. After successful validation, the pre-processor will write an xml intermediate file read in by the omnibus
binary executable. If necessary, it will also generate other input files (such as the run tape file used for
running on Monte Carlo N-Partcle [MCNP] geometry).

3. The script will launch a local process with arguments such as mpirun -np 4 omnibus batman.xml
and then will save the output to the current directory and echo it to the screen.

4. When the omnibus execution is complete, it will write out tally data and other program output to
several different files.

5. A Python post-processor reads the output and converts it to a human-readable format, leaving the
original output files for later post-processing.

2.1.2 EXAMPLE ON A CLUSTER USING PBS/TORQUE

In this example, the local machine problem is copied and the run block is changed (see [RUN=pbs] (page 30)):

[PROBLEM]
name emmet
description "I'm dark and brooding, too. Oh look guys, a rainbow!!"

! -- snip -- !

[RUN=pbs]
nodes 1
ppn 32
walltime "1:00:00"

When omnibus-run is executed on the head node, it will launch qsub, monitor the job ID until it begins
running on the compute node, and will echo output to the screen over an ssh connection. The process on the
head node remains almost entirely idle during the problem run, so the user need not worry about incurring
the wrath of the system’s administrator.

Note: Be aware that some of the pre-processing may be computationally expensive, specifically when using
the MCNP model on a large input deck. In that case, it is recommended that one generate the runtpe file
separately and specify the runtpe_path parameter instead of the input command so that Omnibus does
not run the MCNP pre-processor on the head node. Alternatively, one may be able to run omnibus-run or
omnibus-pre on a compute node.

2.1.3 RUNNING OMNIBUS MANUALLY

Separate scripts are provided for pre- and post-processing an Omnibus input. To generate the Omnibus XML
input file from an ASCII input, call:

6

$ omnibus-pre my_problem.omn

This will create a Teuchos ParameterList XML input file my_problem.inp.xml. This parameter list is then
run with the Omnibus driver:

$ mpirun -np 16 omnibus my_problem.inp.xml

Post-processing (including plotting keff and Shannon entropy convergence, as well as rendering the XML
output into a more human-readable format) is done with the command:

$ omnibus-post my_problem.pp.json

2.2 OMNIBUS ASCII INPUT FORMAT
The Omnibus ASCII input is a human-readable, minimal input syntax for Omnibus. The underlying Omnibus
input data structure is hierarchical, and the ASCII input is designed to flatten the hierarchy. The input consists
of (1) “blocks” of input data, each of which represents a database, and (2) cards, which consist of parameters
and “commands” which generate parameters or perform other functions.

2.2.1 BLOCKS
Block titles have the following formats

[CLASS]
[CLASS name]
[TYPEDCLASS=type]
[TYPEDCLASS=type name]
[TYPEDCLASS][TYPEDSUBCLASS=type name]
[CLASS][SUBCLASS name]
[..][SIBLING]
[.][DAUGHTER]

These formats embed the location in the hierarchy, the database class, the database type, and the name of this
particular instance of the database class. The “name” (which requires a value with only letters, numbers, and
the underscore) is simply a shorthand for declaring the block and adding a “name” parameter. The class type
is required for databases with multiple allowed types (e.g., model and physics), but it is disallowed for types
that do not. Only the rightmost database can have a type: its parent block types must be omitted.

Relative blocks can be specified using the special [..] and [.] keywords analogous to POSIX paths. The
[..] block specifies “belonging to two blocks above the current block location.” Similarly, [.] means
“belonging to one block above the current block location,” allowing the easy specification of subdatabases.
These specifications simplify deeply nested blocks; in the above example, the full list of blocks is expanded
to:

[CLASS]
[CLASS name]
[TYPEDCLASS=type]
[TYPEDCLASS=type name]
[TYPEDCLASS][TYPEDSUBCLASS=type name]
[CLASS][SUBCLASS name]
[CLASS][SIBLING]
[CLASS][SIBLING][DAUGHTER]

Whitespace in block titles, as well as capitalization for the class and type attributes, is ignored.

7

2.2.2 CARDS

Cards are started on a new line; an indentation of four or more spaces is treated as a continuation of the
previous card. Spaces separate values in a parameter list or arguments in a command. For strings, quotation
marks can be used to treat whitespace as standard characters. The backslash can be used to escape quotation
marks inside a quoted string.

For example, these two parameters demonstrate the correct usage of whitespace:

param This is a list of seven parameters
param "This is a single parameter with an \" embedded quotation mark."

Tip: One common input error is to mistake a small indentation on the next line for a continuation. This
statement declares three parameters inside a block:

[WAYNE]
something value value
business business numbers
is this working

whereas this is one parameter with multiple values:

[WAYNE]
something value value

business business numbers
is this working

Using the syntax highlighting files for Vim and Emacs provided in the Exnihilo environment or using the
omnlexer Pygments lexer will make such errors very obvious.

2.2.3 OTHER FEATURES

2.2.3.1 Special characters

The following characters are treated as special tokens in the ASCII input:

Table 1: Special characters in Omnibus input.

Token Name Use

! Exclamation Comment: all following characters on the line are ignored
Hash Used to include other files
\ Backslash Escapes other special characters
' Single quote Starts or ends a string
" Quote Starts or ends a string
: Colon Separates variable names in column format, or creates sepa-

rate items in a list
- Dash A standalone series of dashes is translated to the None

Python token, used in lists or column format to denote the
absence of a value

-> Arrow Creates a two-item tuple indicating a mapping
$ Dollar Encloses a math expression to be evaluated
| Pipe Encloses units specification

8

Whitespace is generally ignored. The exception is the line continuation described above in which four leading
spaces indicate continuation of the previous line. When embedded in a quoted string, whitespace is preserved.

Any text on a line following an exclamation point is ignored.

2.2.3.2 Math expressions

The Omnibus ASCII input format can evaluate6simple math expressions enclosed in a matching pair dollar
signs in the input. Like quotations, these signs must be on the same line and separated from other input values
by whitespace. An example of a math expression is:

x $1/3$ $2**5$

2.2.3.3 Unit support

When the Pint8 python package is installed, Omnibus can automatically convert units to the correct type
needed by an input parameter. Units are surrounded by pipes and modify the previously input value. Like
quotations and math expressions, units must be defined on a single line and separated from other input values
by whitespace. An example of unit conversion is:

[DEPLETION]
power 3.14 |Btu / fortnight|
burn_length 1.0e-5 | millenia |

Since the [DEPLETION] database (page 212) expects power in units of megawatts and burn length in units
of days, the input quantities will be converted to those types when they are exported for the Omnibus binary
driver.

The Pint package provides a comprehensive set of available units9.

Warning: Currently, units are only supported for scalar quantities, not parameters that take lists. Trying
to use units in that case will cause an error.

2.2.3.4 Interpolation

Inside numerical lists, the MCNP interpolation/repetition shorthand characters “I,” “ILOG,” “M,” and “R”
are implemented. For example,

x_coordinates 1 2I 4

is interpolated to form

x_coordinates 1 2 3 4

This feature is tied to the parameter processing itself, so only numeric lists have the ability to interpolate (i.e.,
the letter I is treated just like that letter in normal parameters). This also means that Python or JSON input
can use the interpolation/repetition shorthand characters for convenience.

6 This capability is implemented using the simpleeval7 library.
7 https://github.com/danthedeckie/simpleeval
8 https://pint.readthedocs.io/en/0.9/
9 https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

9

https://pint.readthedocs.io/en/0.9/
https://github.com/hgrecco/pint/blob/master/pint/default_en.txt
https://github.com/danthedeckie/simpleeval

Tip: The vacuum-omnibus-input (page 20) script will read the Omnibus input file, reformat it, and rewrite it.
If the input and output are not logically the same, then there may be a subtle syntax error in the input file
(e.g., not indenting when continuing). This tool only parses the input file; it does no expansion, validation, or
defaulting.

Tip: To view a validated and reformatted ASCII version of input, one can explicitly tell the preprocessor to
save an .omn file:

$ omnibus-pre problem.omn -o problem.validated.omn

This operation is performed automatically when using the omnibus-run (page 15) command.

2.3 OMNIBUS INPUT AND OUTPUT

Omnibus accepts multiple input formats, prints output to the terminal screen, writes (possibly multiple)
intermediate files, and processes the output into more useful formats.

The following image describes how files are generated and used while driving Omnibus through the front end:

2.3.1 INPUT FILES

Omnibus ASCII input files (with the ‘.omn’ extension) are described in ASCII input (page 7):

[PROBLEM]
name "CE pin cell lava_scempp kcode problem"
mode kcode

[MODEL=mcnp]
input mcnp_godiva.mcnp

These are unfolded into hierarchical databases and are then converted to XML for the Omnibus executable.
YAML and JSON hierarchical databases are also supported, which may appeal more to power users:

{
"problem": {
"name": "CE pin cell lava_scempp kcode problem",
"mode": "kcode",
},

"model": {
"_type": "mcnp",
"input": "mcnp_godiva.mcnp",

}
}

Python files that can modify an existing (e.g., ASCII-created) input definition are also supported. When
pre-processing Python input definitions, a local db variable contains the Omnibus input definition hierarchy
and can be modified or extended. This Python method is extremely powerful for automating repetitious tallies,
as demonstrated in this example that creates five similar cylindrical mesh tallies sharing an energy grid:

10

User inputs

Preprocess outputs

Execution outputs

Postprocess outputs

problem.omn

Preprocessing

extend.json modify.py

problem.inp.xml problem.inp.omn problem.pp.json

Execution

Postprocessing

problem.out.h5 omnibus.out

stdout

omnibus.err

stderr

problem.out-parallel.h5

PHDF5 only

problem.out.rst

problem.out.html

problem-keff.pdfcelltally.csv

Fig. 1: Execution flow for omnibus-run. The small black boxes are the typical input/output files, blue
circles are parts of the Python pre-processor run on the head node, the red circle is the Omnibus executable
(run on the compute nodes), and dotted lines denote optional files (e.g., multiple input files).

11

import numpy as np

new_tallies = []

neutron_bins = [2e7, 1e5, 1e3, 10, 1, 1e-5]
photon_bins = np.linspace(0, 1e6, 11)[::-1] # 10 linear bins to 1 MeV
reactions = ["flux"]

targets = [
area, loc, x, y, r
('PTP', 'FT-A1', -4.66117, -2.69113, 0.929640,),
('SVXF', 'VXF-1', 3.07648, 39.09038, 2.011680,),
('SVXF', 'VXF-2', -3.45642, 43.91796, 2.011680,),
('SVXF', 'VXF-3', -9.15368, 38.12784, 2.011680,),
('PTP', 'FT-A1', -4.66117, -2.69113, 0.929640,),
]

Add each tally to the list
for (area, loc, x, y, r) in targets:

tal = {
'name': ":".join((area, loc)),
'description': "flux in %s target location %s" % (area, loc),
'reactions': reactions,
'r': [0.0, r],
'theta': [0.0, 1.0], # divided by 2pi
'translate': [x, y, 0],
'z': [-25.4, 25.4],
'neutron_bins': neutron_bins,
'photon_bins': photon_bins,
}

new_tallies.append(tal)

Set all cylindrical tallies
assert 'tally' in db
assert 'cylmesh' not in db['tally']
db['tally']['cylmesh'] = new_tallies

This could be integrated into an Omnibus run file by executing:

omnibus-run hfir.omn hfir-tallies.py

2.3.2 PRE-PROCESSING OUTPUT FILES

The pre-processing step will typically create several files for an input problem.omn:

problem.pp.json If using the omnibus-run front end, then this will be created: it is a fully
processed version of the problem input, with all default parameters explicitly filled.

problem.inp.omn If using the omnibus-run front end, then this will be created: it is a fully
processed and reformatted version of the problem input. It also has all parameters filled.

problem.inp.xml The Teuchos ParameterList XML file is read by the omnibus executable.

Additionally, if an MCNP model is being used, then a runtpe file will be generated. Finally, if a [RUN=pbs]
block is present, then a problem.pbs submission script will be generated.

12

2.3.3 EXECUTION OUTPUT FILES

Running Omnibus will generate one or more output files:

problem.out.h5 Execution results and data will be written using serial HDF5.

problem.out-parallel.h5 If running on a parallel file system and parallel HDF5 is installed,
then some datasets will be written to this file and “externally linked” into the serial HDF5
file. Generally, only data that are decomposed across MPI domains are written to this file.

omnibus.out Messages will be written from the executable (and PBS script if applicable) to
stdout. Generally, only embedded external code (such as Trilinos solvers and SCALE cross
section processing routines) write to stdout.

omnibus.err Messages will be written from the executable (and PBS script if applicable)
to stderr. These include logging and diagnostic messages during the program run, as
described in the next section.

2.4 ERRORS, WARNINGS, AND OTHER MESSAGES

Omnibus can encounter unexpected conditions for a variety of reasons, including:

• problems with the system configuration,

• logic errors in the application code,

• inconsistencies in nuclear data being used, and

• errors in user input.

To the extent possible, Omnibus attempts to detect and gracefully handle these errors to provide feedback to
the user that is meant to help in determining the root cause.

2.4.1 LOG MESSAGES

The Exnihilo framework has an internal logging system for writing messages of different levels of severity to
the screen. The omnibus-run (page 15) process intercepts these messages, as well as all other output text, and
will print formatted logging statements. For some statements that are not very important but that provide the
user with an idea of the program status, omnibus-run (page 15) will only display the latest statement. Other
higher-level statements will remain on the screen (with levels of color, for terminals that support it, indicating
their severity).

The different levels of logging messages are:

DEBUG Very fine-grained diagnostic messages that show a level of detail not typically needed for problem
execution.

DIAGNOSTIC Progressive output that shows detailed state information about the problem. Example
diagnostics include Denovo iteration count and Shift cycle k-effective estimates.

STATUS Traces the flow of Omnibus showing what part of the program is being executed.

INFO Informational messages unique to the particular problem being run, such as “Loaded 123 cross
sections” or “Set default for parameter ‘foo’ to 123.”

WARNING Messages about situations that are unusual, unexpected, or possibly inconsistent: something
might be wrong. They may indicate the possibility of incorrect solutions, but they may also be totally
harmless, depending on the intent of the user. The user should examine these warnings carefully to
determine their importance. Examples of warnings are:

13

• when nuclear data for a requested nuclide is unavailable and a similar nuclide (e.g., ground state
or unbound) was substituted;

• when a user requests Silo output, but Silo support is not compiled;

• when volumes are omitted from cells being tallied, so the solutions change from being normalized
by volume to being unnormalized; and

• when statistical checks on Shannon entropy fail.

ERROR Messages indicating a definite inconsistency: something is wrong. Omnibus is built to attempt
to recover gracefully from unexpected program input, cross section data, etc. When a recoverable
error occurs, an error message is printed. The user should very carefully examine the error to assess its
severity. Example error messages include:

• particles being lost while tracking through the geometry;

• CE cross sections not balancing correctly at the particle’s energy, suggesting an error in the CE
data.

FATAL ERROR This message is the last thing the user will see before the world turns dark: an unrecoverable
error (either due to user input or an unexpected program state) has occurred, and the program will shut
down. If Omnibus is being monitored inside omnibus-run, then it will attempt to kill the process
being run (e.g., by signalling mpiexec or calling qdel).

By default, DIAGNOSTIC and higher levels are printed to the screen and echoed to omnibus.err, and INFO
and higher levels are saved to the Omnibus HDF5 output file. There is typically not any output in the
omnibus.out file; this usually only contains output from third-party libraries.

Tip: The Omnibus input parameter screen_verbosity (page 42) will change the level of message that is
written to the screen and the omnibus.err file.

Note that the warning labels described above correspond to special prefixes in the program output:

Table 2: Omnibus diagnostic output examples.

Level Example

DIAGNOSTIC Loading nuclide u-235 @ 293K.
STATUS ::: Beginning inactive cycles
INFO >>> Loading CE library ce_v7.0_endf.h5
WARNING *** neutron data for ZAID=1001 is not

available for `` ``MT=301 in the splicing
AMPX library.

ERROR !!! Geometry error in particle 0:123: ...
FATAL ERROR !*!*! Couldn't find a CE library for ce_v7.

4_endf

2.4.2 OUT-OF-MEMORY ERRORS
It is very possible for Omnibus to run out of memory in the middle of execution since large data fields are
allocated at different points during the run. On some system configurations, Omnibus will be able to correctly
detect and report an out-of-memory (OOM) error10.

10 The kernel’s memory allocation function will correctly return a NULL pointer, indicating a failure to allocate. This will cause
the C++ library to throw a std::bad_alloc exception, which is then caught by Omnibus.

14

However, the default behavior11 on Linux kernels is to overcommit memory. Although overcommitment is
practical for most real-world applications, its consequence is that an application cannot know exactly when
or why it ran out of memory. Rather than printing a useful message about memory allocation, the offending
Omnibus process will immediately be terminated (with SIGKILL, signal 9) without any opportunity to clean
up.

Tip: When launched with [RUN=pbs] (page 30), a problem killed due to an OOM error may produce an
omnibus.err file that ends with:

--
Primary job terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been aborted.
--
--
mpiexec noticed that process rank 72 with PID 115153 on node mod-pbs-c62
exited on signal 9 (Killed).
--

and an output file that may contain:

5 total processes killed (some possibly by mpiexec during cleanup)
!*!*! Omnibus execution failed with error 137

To help diagnose OOM errors, Omnibus provides a print_memory (page 41) parameter that will periodically
output local and global memory usage. Additionally, the final status or informational update before the error
may provide the context for the failure: if the last message is about constructing a Denovo state vector, then it
is likely that the Denovo discretization is too fine to fit on the requested number of processors.

Aside from using a machine with more RAM per core, there are two possible actions to take to mitigate OOM
errors. If the allocation failure is about decomposed data (such as the state vector in Denovo), then it will be
necessary to use more processors or nodes to decrease the memory requirement per process. However, if the
failure is due to replicated data such as material compositions or broadened cross sections in Shift, then the
user can reduce the node occupancy (processes per node (page 33)), allowing each process to use more of the
available memory on the system.

See Performance considerations (page 178) for a discussion of memory consumption in Denovo.

2.4.3 MISSING CAPABILITIES

Although the Omnibus preprocessing validation should encode configuration requirements and feature
capabilities through its “applicability” statements and other logic, it is possible that the developers have
missed something. If a feature is implemented by SCALE but is not enabled in the installed copy of
SCALE (usually due to an unavailable third-party library), then an error message will explain that the build
configuration does not support the feature. If a capability is planned for Shift or is only known to work under
a limited set of other options, then an error message may explain that the feature is not currently implemented.

2.5 COMMAND LINE TOOLS

2.5.1 OMNIBUS-RUN

Run the Omnibus pre-processor, run Omnibus, and run the post-processor.
11 https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

15

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Run Omnibus from start to finish.

usage: omnibus-run [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[inp [inp ...]]

2.5.1.1 Positional Arguments

inp Input file names (omnibus, yaml, and/or python).

2.5.1.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

2.5.1.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

2.5.2 OMNIBUS-PRE

Generate an XML input file for Omnibus, validating input along the way.

Preprocess Omnibus input files.

usage: omnibus-pre [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[-o OUTPUT]
[inp [inp ...]]

2.5.2.1 Positional Arguments

inp Input file names (omnibus, json, yaml, and/or python).

16

2.5.2.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

-o, --output Output filename (xml, json, omn, yaml)

2.5.2.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

2.5.3 OMNIBUS

The actual Omnibus binary executable.

usage: omnibus [--version] xml_input

Positional arguments:

xml_input Path to the XML parameter input file.

Options:

--version Show usage information and exit.

2.5.4 OMNIBUS-POST

Execute the Omnibus post-processing functions specified in a [POST] block. The argument is the “pre-
processed” .pp.json file produced when running omnibus-run.

Post-process Omnibus output.

17

usage: omnibus-post [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
pp

2.5.4.1 Positional Arguments

pp Omnibus postprocess file (.pp.json)

2.5.4.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

2.5.4.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

2.5.5 OMNIBUS-ANALYSIS

Load an Omnibus output file into an iPython shell

usage: omnibus-analysis [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[--format FORMAT] [--varname VARNAME]
[--front-end {ipython,python}]
inp

2.5.5.1 Positional Arguments

inp path to Omnibus HDF5 file

18

2.5.5.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

--format format of the HDF5 file (e.g. ‘output’,’meshmodel’)

Default: “output”

--varname local variable with loaded file wrapper

Default: “f”

--front-end Possible choices: ipython, python

interactive console type

Default: “ipython”

2.5.5.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

2.5.6 OMNIBUS-CONF

Print configuration info from an HDF5 output file or the current Omnibus configuration

usage: omnibus-conf [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[output]

2.5.6.1 Positional Arguments

output Path to HDF5 file, or blank for current configuration

19

2.5.6.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

2.5.6.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

2.5.7 VACUUM-OMNIBUS-INPUT

Parse an Omnibus input file and write a clean, consistent copy.

usage: vacuum-omnibus-input [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
inp [inp ...]

2.5.7.1 Positional Arguments

inp omnibus input file name

2.5.7.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

20

2.5.7.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

2.5.8 MAKE-DENOVO-MODEL

Create a Denovo mesh model file from a denovo output file

usage: make-denovo-model [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[-o OUTP] [--group GROUP] [-z] [-t TOLERANCE]
inp

2.5.8.1 Positional Arguments

inp Input file name (.h5).

2.5.8.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

-o, --output Mesh model output filename (.h5)

--group HDF5 group that contains the matids

Default: “denovo”

-z, --disable-compression Disable compression of the source term

Default: True

-t, --mix-tolerance Change the threshold for combining similar mixtures

Default: 0.0

21

2.5.8.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

2.5.9 DENOVO-POINT-OUTPUT

Save spectra from a Denovo output file

usage: denovo-point-output [-h] [--version] [-g] [-c] [-e ENV] [-v] [-q]
[--very-quiet] [--silent]
[--log {None,DEBUG,STATUS,INFO,WARNING,ERROR,CRITICAL}]
[--block BLOCK] [--field FIELD]
[--strength STRENGTH] [--on-disk]
output locfile

2.5.9.1 Positional Arguments

output Path to Denovo .out.h5 file

locfile Path to point locations, or - for stdin

2.5.9.2 Named Arguments

--version show program’s version number and exit

-g, --debug Enable extended debug assertions

Default: False

-c, --clobber Overwrite exiting output files rather than renaming them

Default: False

-e, --env Update global environment settings with this JSON file

--block Name of the Denovo run block to extract

Default: “denovo”

--field Name of the energy-dependent output field (default: flux)

Default: “flux”

--strength, -s Source strength normalization

Default: 1.0

--on-disk, -k Read point data without loading entire file into memory

Default: False

22

2.5.9.3 verbosity

-v, --verbose Print all debug messages

Default: “STATUS”

-q, --quiet Only print informational and warning messages

--very-quiet Only print warning messages

--silent Print messages only on failure

--log Possible choices: None, DEBUG, STATUS, INFO, WARNING, ERROR,
CRITICAL

Create a log file with the given verbosity

Exnihilo version (UNKNOWN)

23

3. OMNIBUS INPUT DESCRIPTION

The Omnibus input is split into a hierarchy of blocks comprised of databases, sublists, and parameters.
The front end also supports “commands” for creating or modifying input parameters, as well as additional
pre-processing and post-processing for validation.

Databases, sublists, and parameters all have the following properties:

Name The name of the parameter as it appears in the input. Some parameters have shorter
aliases (e.g., nemin for n_energy_min) that appear in the documentation just below the
full parameter name.

Description The text immediately below the name should describe what it means and how it is
used.

Applicable when A series of rules describing when the parameter may or may not be used.
These rules take into account other parameters as well as the build configuration. Bulleted
“applicability” items indicate that all the conditions must be met.

Default If present, a default value for the parameter or database. The default may be a fixed
value (e.g., 3.0), or it may be a procedure based on the other input parameters, in which
case a rough description of the default is given. For databases and sublists, the default
may appear as a Python expression (e.g., {'_type': "none"} for a database with type
“none”). If no default is given, then the parameter or database is required in the given
context. However, a few parameters and databases are optional and are marked accordingly.

Export The parameter will be renamed when writing to the .inp.xml file for historical reasons.

Note: This documentation was generated automatically with the following version of Exnihilo:

version 6.3.pre-b13 (branch ‘master’ on ‘upstream’, r729: #9809b44f on 2020JUL16)

date 2020-07-16 22:02:43

3.1 OMNIBUS INPUT FILE CONTENTS

Each of the top-level blocks (and the overall problem input file) are described here.

database [COMP]
Composition options and definitions. See [COMP] (page 106).

Default (empty database)

database [DENOVO]
Denovo solver options. See [DENOVO] (page 176).

Applicable when

• ‘Denovo’ is enabled in this build; and

• solver is ‘denovo’

database [DEPLETION]
ORIGEN nuclide depletion options. See [DEPLETION] (page 212).

25

Applicable when

• ‘depletion’ is enabled in this build; and

• solver is ‘depletion’

deprecated geometry
Deprecated entry geometry has been renamed to model.

Update to model

database [HYBRID]
Monte Carlo acceleration method. See [HYBRID] (page 224).

Applicable when problem mode is hybrid

database [MODEL]
Representation of geometry and compositions. See [MODEL] (page 43).

database [OUTPUT]
Output options. See [OUTPUT] (page 39).

Default (empty database)

sublist [PHYSICS]
Physics treatment. See [PHYSICS] (page 85).

Default void physics when in mode raytrace

database [POST]
Post-processing options. See [POST] (page 229).

Default (empty database)

database [PRE]
Pre-processing options. See [PRE] (page 227).

Default (empty database)

database [PROBLEM]
Problem identifiers and mode. See [PROBLEM] (page 27).

sublist [RESPONSE]
Tally responses. See [RESPONSE] (page 111).

Applicable when

• using Shift, or in adjoint mode with adjoint_source tally; and

• solver is ‘shift’

Default (empty sublist)

database [RUN]
Execution parameter. See [RUN] (page 29).

Default (empty none database)

database [SHIFT]
Shift Monte Carlo solver options. See [SHIFT] (page 167).

26

Applicable when

• ‘Shift’ is enabled in this build; and

• solver is ‘shift’

parameter solvers(advanced)
List of solvers being used.

Default based on presence of Shift/Denovo

Type list in which each element is a string

sublist [SOURCE]
Particle source definition. See [SOURCE] (page 56).

Default model-defined source if applicable, or global fission for kcode

Applicable when using Shift, in forward mode, or in adjoint mode with adjoint_source
source

postprocessor
Only a single ‘sourcerer’ source may be present.

Applicability solver is ‘shift’

Applicability solver is ‘denovo’

Applicability problem mode is kcode

database [TALLY]
Tallies and Monte Carlo diagnostics. See [TALLY] (page 113).

Default (empty database)

Applicable when using Shift, or in adjoint mode with adjoint_source tally

3.2 PROBLEM ATTRIBUTES: [PROBLEM]

The problem database specifies top-level information about the problem being run. It includes the output file
name, a unique problem identifier, and the overall solution technique.

parameter adjoint_source
Which block to use to construct adjoint source.

Choose whether a cell or mesh tally from the [TALLY] block or a manually defined source from the
[SOURCE] block is used as an adjoint source. Currently there are a number of limitations on using
tallies as adjoint sources.

Warning: Creating an adjoint source from tallies is experimental: the adjoint source strength
and spectrum may unexpected, or the particular type of selected tally might not be implemented.
Contact the developers to find out if the latest capabilities meet your needs.

Default source

Type source or tally

27

Applicable when mode is adjoint

parameter mode
Problem mode.

Valid modes are:

kcode Solve the k-eigenvalue problem for criticality safety or reactor physics analysis.

forward Solve a fixed-source problem for shielding calculations, etc.

adjoint Solve an adjoint fixed-source problem with the [SOURCE] or [TALLY] block interpreted as
adjoint source (see adjoint_source (page 27)). Only Denovo can run adjoint problems.

raytrace Use the Denovo ray tracer to generate discretized materials for the problem. No transport
will be performed.

hybrid Run a forward transport problem in Shift using deterministic acceleration.

Type adjoint, forward, hybrid, kcode, or raytrace

parameter name
Descriptive problem name.

Default Untitled

Type string

parameter num_threads
Number of OpenMP threads per process.

Currently, only Shift transport supports multithreading. Denovo solution time will not be affected by
increasing the number of threads.

Default 1

Type positive integer

Applicable when ‘OpenMP’ is enabled in this build

preprocessor (advanced)
Ignore manual input of pid, rev.

parameter pid(advanced)
Unique identifier automatically set for this problem run.

The problem identifier (pid) is a unique string generated by the Omnibus pre-processor to ensure that
input and output files are properly correlated. The problem ID value added to the XML input file
is copied to all HDF5 output files. It is comprised of the problem execution date and a randomly
generated unique identifier string (UUID).

Default unique problem identifier

Type string

parameter scale_rev(advanced)
SCALE source revision used to generate this file.

Default current Exnihilo revision

28

Type integer

parameter seed
Random number generator seed.

The random number generator seed is used for multiple parts of both Denovo and Shift runs:

• Shift particle sourcing and transport

• Denovo uncollided flux (if the MC option is enabled)

• Denovo material ray tracing (if not using the rays_deterministic option)

• Denovo source point sampling

Default 2272013

Type non-negative integer

3.3 EXECUTION: [RUN]

The [RUN] database enables support for running the Omnibus executable with the omnibus-run (page 15)
command. The auto-run feature will format and echo program output to the screen, and it automatically saves
the output and error streams to disk.

If the SCALE and DATA environment variables are not set, omnibus-run will use the values determined at
configuration time.

Table 3: Available types for the [RUN] database

Type Description Applicability

none (page 29) Do not run; only perform pre-processing
serial (page 29) Run on a single CPU core
mpi (page 30) Run on multiple cores by directly calling MPI ‘MPI’ is enabled in this build
pbs (page 30) Run by submitting a PBS job ‘MPI’ is enabled in this build
cray (page 34) Run on Cray supercomputers ‘MPI’ is enabled in this build
titan Alias to cray type —

3.3.1 [RUN=NONE]

Do not run; only perform pre-processing.

3.3.2 [RUN=SERIAL]

Run as a serial process on the local machine, echoing output to the user. If the omnibus-run process is
aborted, the omnibus command will also abort.

parameter hostname(advanced)
Cluster name for automatically determining processor options.

Default based on hostname or PBS_O_HOST environment

Type __unknown__, apollo, cades, eos, excalibur, falcon, falcon2, oic,
poseidon2, remus, romulus, or titan

parameter omnibus(advanced)
Path to the Omnibus executable.

Default '/.../omnibus'

Type file path for reading

29

3.3.3 [RUN=MPI]

Run as an MPI process on the local machine, echoing output to the user. If the omnibus-run process is
aborted, the mpirun omnibus command will also abort.

parameter hostname(advanced)
Cluster name for automatically determining processor options.

Default based on hostname or PBS_O_HOST environment

Type __unknown__, apollo, cades, eos, excalibur, falcon, falcon2, oic,
poseidon2, remus, romulus, or titan

parameter mpiexec(advanced)
Path to the MPI run command.

Default '/.../mpiexec'

Type file path for reading

parameter mpiexec_args
MPI execution arguments passed to mpiexec.

Default Based on CMake configuration and value for np

Type list in which each element is a string

parameter np
Number of processors to run.

Default PBS_NP if inside a PBS session

Type positive integer

parameter omnibus(advanced)
Path to the Omnibus executable.

Default '/.../omnibus'

Type file path for reading

3.3.4 [RUN=PBS]

Create a PBS run file for this job. An example of a typical PBS run block is

[RUN=pbs]
nodes 1
ppn 16
pmem 7900mb
walltime "24:00:00"

If the omnibus-run command is aborted while the job is run, the job will not be automatically aborted. The
qdel command must be invoked independently to abort the job.

The cpp option specifies the number of cores to be used by each MPI task: cpp 2 will use half the cores
available on the node. Alternatively, the number of processors per node can be set using the ppn parameter.
The product of these two parameters cannot exceed the number of cores available on a compute node.

Additionally, the number of total MPI tasks used to run Exnihilo can be reduced below the requested number
of nodes and cores with the np option, which has a default based on the number of requested nodes and cores.
Adjusting this parameter may be necessary if, for example, Shift is to be decomposed into a non-power-of-2
number of blocks.

30

parameter account
Account number to charge for time (e.g., NFI000, NSED).

Default based on hostname

Type string

parameter attributes
parameter attr

key=value pairs for PBS attributes (-W argument).

Default based on hostname

Type list in which each element is a string

parameter bind
Bind processes to hardware tasks.

Type boolean

postprocessor
Ensure that the layout is consistent with the host cluster.

Applicability Host cluster has been detected or specified

parameter cpp
Number of cores to assign to each process.

Type positive integer

parameter detach
Simply submit the job and to not follow it.

Default False

Type boolean

parameter email
Email address of recipient.

Default result of git config author.email (optional)

Type string

parameter environ
Environment variables to export in the PBS script.

Default ---

Type list of variables (each element is a string without special characters)

parameter extra_cmds
Extra commands to run at the beginning of the PBS script.

Default ---

Type list in which each element is a string

parameter hold
Set jobs to ‘hold’ status when submitting.

31

Default False

Type boolean

Applicable when detach is True

parameter hostname(advanced)
Cluster name for automatically determining processor options.

Default based on hostname or PBS_O_HOST environment

Type __unknown__, apollo, cades, eos, excalibur, falcon, falcon2, oic,
poseidon2, remus, romulus, or titan

parameter join
Output joining flags.

Default oe

Type string

parameter modules
Modules to load at the beginning of the script execution.

Default based on hostname

Type list in which each element is a string

parameter mpiexec(advanced)
Path to the MPI run command.

Default '/.../mpiexec'

Type file path for reading

parameter mpiexec_args
MPI execution arguments passed to mpiexec.

Default Based on host layout

Type list in which each element is a string

parameter name
Job name.

Default base name of problem input file

Type string without special characters

parameter node_kw(advanced)
PBS keyword to specify the number of nodes.

Default usually ‘nodes_ppn,’ but ‘nodes’ on Titan and ‘select’ on others

Type nodes_ppn, nodes, or select

preprocessor (advanced)
Automatically determine the layout from the host and the given arguments.

parameter nodes
Number of compute nodes to use.

32

Type positive integer

parameter np
Total number of MPI processes.

Type positive integer

parameter omnibus(advanced)
Path to the Omnibus executable.

Default '/.../omnibus'

Type file path for reading

parameter pmem
Amount of memory per reserved processor (e.g., ‘7900mb’).

Optional

Type string

parameter ppn
Number of processes to execute on each node.

Type positive integer

parameter project
Project name used in the -P flag.

Default based on hostname

Type string

parameter qdel
PBS deletion command or path.

Default qdel

Type string

parameter qos
PBS job classification option.

Default based on hostname and job specs

Type string

parameter qstat
PBS status command or path.

Default qstat

Type string

parameter qsub
PBS submission command or path.

Tip: To generate a PBS file but not actually submit or hold it, set qsub to “echo”, and set detach
true. With these two options, no PBS commands will be invoked.

33

Default qsub

Type string

parameter queue
parameter q

Queue to use.

Optional

Type string

parameter walltime
Wall time limit.

Note: It is common to have colons as part of the wall time. Since colons must be escaped in Omnibus
ASCII input, the walltime input parameter will typically need escaping:

[RUN=pbs]
walltime "24:00:00"

Type hh:mm:ss or mm:ss or number of seconds

parameter when_email
When to email.

Default ea

Type string

Applicable when Email is present

3.3.5 [RUN=CRAY]

Create a PBS file for this job to run on Cray machines. An example PBS run block is:

[RUN=cray]
nodes 1024
ppn 16
account nfi000
walltime "12:00:00"

Just like with PBS, if the omnibus-run command is aborted while the job is run, the job will not be
automatically aborted. The qdel command must be invoked independently to abort the job.

If the number of cores is less than or equal to 8 (the number of “shared core units”), the -j 2 option will
automatically be appended to stride the cores by 1.

parameter account
Account number to charge for time (e.g., NFI000, NSED).

Default based on hostname

Type string

34

parameter aprun(advanced)
Path to the aprun command.

Default '/.../mpiexec'

Type file path for reading

parameter attributes
parameter attr

key=value pairs for PBS attributes (-W argument).

Default based on hostname

Type list in which each element is a string

parameter bind
Bind processes to hardware tasks.

Type boolean

postprocessor
Ensure that the layout is consistent with the host cluster.

Applicability Host cluster has been detected or specified

parameter cpp
Number of cores to assign to each process.

Type positive integer

parameter debug
Show the aprun layout.

Default False

Type boolean

parameter detach
Simply submit the job and to not follow it.

Default False

Type boolean

parameter email
Email address of recipient.

Default result of git config author.email (optional)

Type string

parameter environ
Environment variables to export in the PBS script.

Default ---

Type list of variables (each element is a string without special characters)

parameter extra_cmds
Extra commands to run at the beginning of the script.

35

Default 'ulimit -c unlimited' 'export ATP_ENABLED=1'

Type list in which each element is a string

parameter hold
Set jobs to ‘hold’ status when submitting.

Default False

Type boolean

Applicable when detach is True

parameter hostname(advanced)
Cluster name for automatically determining processor options.

Default based on hostname or PBS_O_HOST environment

Type __unknown__, apollo, cades, eos, excalibur, falcon, falcon2, oic,
poseidon2, remus, romulus, or titan

parameter join
Output joining flags.

Default oe

Type string

parameter mem
Memory required per MPI task (with G/M/K extension).

Default ''

Type string

parameter modules
Modules to load at the beginning of the script execution.

Default based on hostname

Type list in which each element is a string

parameter name
Job name.

Default base name of problem input file

Type string without special characters

parameter node_kw(advanced)
PBS keyword to specify the number of nodes.

Default usually ‘nodes_ppn,’ but ‘nodes’ on Titan and ‘select’ on others

Type nodes_ppn, nodes, or select

preprocessor (advanced)
Automatically determine the layout from the host and the given arguments.

parameter nodes
Number of compute nodes to use.

36

Type positive integer

parameter np
Total number of MPI processes.

Type positive integer

parameter omnibus(advanced)
Path to the Omnibus executable.

Default '/.../omnibus'

Type file path for reading

parameter pin_system
Pin system tasks to a single CPU core.

Default True if not using all cores on a node

Type boolean

Applicable when hostname is titan or eos

parameter place
How to distribute jobs on the node.

Default 'scatter:excl'

Type string

Applicable when hostname is excalibur

parameter ppn
Number of processes to execute on each node.

Type positive integer

parameter project
Project name used in the -P flag.

Default based on hostname

Type string

parameter qdel
PBS deletion command or path.

Default qdel

Type string

parameter qos
PBS job classification option.

Default based on hostname and job specs

Type string

parameter qstat
PBS status command or path.

Default qstat

37

Type string

parameter qsub
PBS submission command or path.

Default qsub

Type string

parameter queue
parameter q

Queue to use.

Optional

Type string

parameter shared_gpu
Allow all processes to access GPU.

Default True when running Denovo on Titan

Type boolean

parameter tasks_per_unit
Number of processors/hwthreads to use per core unit.

Controls either the number of integer cores used per compute unit or hyperthreading.

Default based on CPUs per node

Type non-negative integer

deprecated threads_per_task
Deprecated entry threads_per_task has been renamed to cpp.

Update to cpp

parameter walltime
Wall time limit.

Type hh:mm:ss or mm:ss or number of seconds

parameter when_email
When to email.

Default ea

Type string

Applicable when Email is present

38

3.4 OUTPUT OPTIONS: [OUTPUT]

Omnibus, Denovo, and Shift are used on a multitude of platforms and system configurations and are run at
many scales, ranging from single-CPU jobs that produce very little output to 300k-core jobs with hundreds
of gigabytes of output. When large amounts of data are written to disk, the I/O performance of HDF5 (the
output format used by Omnibus) can make a dramatic difference in write time.

Like Exnihilo, HDF5 supports both desktop and supercomputer platforms. HDF5 also supports a feature
found on many larger computational clusters: a parallel file system (PFS). Unlike a networked file system
(NFS), in which a file is mirrored or mounted over a network, and updates on one computer will be seen on
the remainder of the network, a PFS actually supports writing to and reading from a file concurrently from
multiple compute nodes. An example of a PFS is Lustre, on which files are decomposed across multiple
separate hard disks. The more disks that a file is stored on, the higher the peak theoretical I/O bandwidth.

Warning: HDF5 will perform extremely poorly when writing in parallel to an NFS drive. (Factor-of-100
slowdowns have been seen.) Install the psutil12 python package to allow Omnibus to detect and warn
about the file system being written to.

HDF5 can be compiled using MPI to enable “collective” operations, in which each application process can
write a subset of the data (e.g., the locally KBA-decomposed Denovo mesh) to a file, and HDF5 will combine
the data into a single file automatically. If the HDF5 implementation being used is compiled correctly
(for example, configured with --with-io-romio-flags="--with-file-system=nfs+ufs+lustre"),
it will be able to interface with the parallel file system and change the file layout when a new HDF5 file is
created.

The file layout (number of aggregators and chunk size) is system- and output-dependent; its performance13 is
tightly coupled to low-level HDF5 parameters, as well. Omnibus attempts to choose the output parameters
for some known systems; a lustre (page 42) command is available to change the stripe and aggregator size
and to update the HDF5 chunk size to match.

Since parallel HDF5 is not installed on (or performant on) all systems, Exnihilo implements its own collective
operations for domain-decomposed data. With this “pseudo-parallel” mode, data from each domain are sent
sequentially to processor 0 and then are written out using serial HDF5 calls. The disable_parallel_hdf5
(page 39) option forces this alternative implementation to be enabled, even if HDF5 is available.

When parallel HDF5 is enabled (and the problem is being run on more than one process), a second output
file with the extension -parallel.h5 will be created for collective operations. The created fields (such as
Denovo flux and depletion number densities) will be linked into the main HDF5 file using the “external link”
feature of HDF5, so only the main .h5 file should ever need to be opened, although both files will need to be
retained.

parameter disable_parallel_hdf5(advanced)
Disable MPI-I/O and write only from a single process.

Default True unless the file system is parallel

Type boolean

Applicable when ‘PARALLEL_HDF5’ is enabled in this build

12 http://pythonhosted.org/psutil/
13 https://support.hdfgroup.org/pubs/papers/howison_hdf5_lustre_iasds2010.pdf

39

http://pythonhosted.org/psutil/
https://support.hdfgroup.org/pubs/papers/howison_hdf5_lustre_iasds2010.pdf

postprocessor
Disallow parallel HDF5 compatibility with non-PFS.

Applicability ‘PARALLEL_HDF5’ is enabled in this build; disable_parallel_hdf5
is False; and the problem run is parallel

Applicability file_system is __unknown__, nfs, nfs3, nfs4, hfs, ntfs, ext3, ext4,
tmpfs, sysfs, btrfs, hugetlbfs, apfs, or xfs

parameter display_counter(advanced)
Write terminal commands for an interactive counter.

Default True if stderr is a terminal display

Type boolean

Applicable when The ‘tqdm’ python package is installed

parameter file_system(advanced)
parameter fs(advanced)

File system type where output is being written.

Default Based on output of the mount command

Type __unknown__, __parallel__, lustre, panasys, nfs, nfs3, nfs4, hfs, ntfs,
ext3, ext4, tmpfs, sysfs, btrfs, hugetlbfs, apfs, or xfs

postprocessor
Disallow NFS output if a PFS is available.

Applicability ‘PARALLEL_HDF5’ is enabled in this build

Applicability the problem run is parallel

Applicability file_system is __unknown__, nfs, nfs3, nfs4, hfs, ntfs, ext3, ext4,
tmpfs, sysfs, btrfs, hugetlbfs, apfs, or xfs

parameter hdf5_alignment(advanced)
Alignment threshold and alignment value for HDF5.

Default 0 0

Units B

Type list in which each element is a non-negative integer

Applicable when

• ‘PARALLEL_HDF5’ is enabled in this build; and

• disable_parallel_hdf5 is False; and

• the problem run is parallel

parameter hdf5_chunk(advanced)
Target size of HDF5 chunks; chunks will be this size or smaller.

Default 65536

Units B

40

Type positive integer

preprocessor (advanced)
Set default Lustre striping based on hostname.

Applicability ‘PARALLEL_HDF5’ is enabled in this build

Applicability disable_parallel_hdf5 is False

Applicability the problem run is parallel

parameter hdf5_mpiinfo_key(advanced)
MPI_Info keys for parallel HDF5 file creation.

Default ---

Type list in which each element is a string

Applicable when

• ‘PARALLEL_HDF5’ is enabled in this build; and

• disable_parallel_hdf5 is False; and

• the problem run is parallel

parameter hdf5_mpiinfo_value(advanced)
MPI_Info values for parallel HDF5 file creation.

Default ---

Type list in which each element is a string

Applicable when

• ‘PARALLEL_HDF5’ is enabled in this build; and

• disable_parallel_hdf5 is False; and

• the problem run is parallel

postprocessor
The parameters hdf5_mpiinfo_key and hdf5_mpiinfo_value must have the same length.

Applicability ‘PARALLEL_HDF5’ is enabled in this build

Applicability disable_parallel_hdf5 is False

Applicability the problem run is parallel

parameter log_memory(advanced)
Periodically print memory usage to screen.

Default True if using Denovo

Type boolean

parameter log_timestamp
Prepend a timestamp with this format to each log message.

The formatting for a time stamp is the standard strftime14 formatting. For example, a value of
[%H:%M:%S] may produce a log message that looks like:

14 https://en.cppreference.com/w/cpp/chrono/c/strftime

41

https://en.cppreference.com/w/cpp/chrono/c/strftime

>>> [11:29:43] Time-stamped message

Optional

Type string

parameter log_verbosity
Minimum level of output to save to log file.

Default info

Type debug, diagnostic, status, info, warning, error, or critical

command lustre
Set stripe size, aggregator, and HDF5 chunk size [kB, #].

Creates hdf5_mpiinfo_key

Creates hdf5_mpiinfo_value

Creates hdf5_alignment

Creates hdf5_chunk

Applicable when file_system is __unknown__, __parallel__, lustre, or panasys

parameter output(advanced)
Destination path for the HDF5 output file.

Default input.out.h5

Type file path to write (extension ‘.h5’)

parameter output_parallel(advanced)
Destination path for parallel HDF5 output.

Default input.out-parallel.h5

Type file path to write (extension ‘.h5’)

Applicable when

• ‘PARALLEL_HDF5’ is enabled in this build; and

• disable_parallel_hdf5 is False; and

• the problem run is parallel

deprecated print_memory
Deprecated entry print_memory has been renamed to log_memory.

Update to log_memory

parameter screen_verbosity
Minimum level of output to print to screen.

Default diagnostic

Type debug, diagnostic, status, info, warning, error, or critical

42

3.5 MODEL DEFINITION: [MODEL]

We define a model as the answer to the question: “What is where?” A model can include compositions,
spatial geometry, and even sources and tallies. As a radiation transport framework, Exnihilo supports model
definitions in several formats.

Every model contains a geometry that can be discretized and solved using Denovo with the built-in ray tracer,
and most models can also be used by the Shift Monte Carlo code. Furthermore, material definitions can be
converted to multigroup cross sections through the SCALE cross section processing libraries or mixed into
multigroup cross sections input in ANISN formats.

Table 4: Feature matrix for the supported models.

Model Denovo Shift Compositions Sources Tallies

DAGMC Yes Yes — — —
Geant4 Yes No Yes — —
Geometria Yes Yes — — —
MCNP Yes Yes Yes Yes No
Mesh Yes Yes — Yes —
RTK Yes Yes — — —
SCALE Yes Yes Yes No No
SWORD Yes No Yes Yes Yes
VERA Yes Yes — — —

If using Shift to obtain volume-averaged reaction rates in geometric cells, the volume of the cells must be
obtained a priori. Some models support automatic calculation a subset of cells; only Reactor ToolKit input:
[MODEL=rtk] (page 53) supports automatic calculation of all cell volumes due to the restricted simple nature
of the geometry. For all other models, the cell volumes can be manually specified with the “volumes” and
“volume_cells” keywords:

volumes 1.0 2.34 0.5
volume_cells 1 200 15

Here, the cells are the “cell labels” (e.g., the cell card IDs in MCNP) and the volumes are the corresponding
volumes in cm3. The volumes are used only in the normalization of tallies, including depletion tallies.

3.5.1 MATERIAL AND CELL IDS

The model internally defines vectors of “matids” and “cellids” that correspond to user-defined material
names and cell labels. Although Omnibus attempts to make these internal identifiers invisible to the user, an
occasional advanced option or low-level error message may include references to these.

The material ID is simply the index into the list of compositions (page 106) in the problem; these are written
to the comp/compositions dataset in the Omnibus output file. Note that for the MCNP model (page 44),
these are usually not the user-assigned m label.

Cell IDs correspond to identifiable user-created spatial regions in the problem. If arrays or universes are used,
a single cell ID might correspond to multiple regions in space. Cell IDs are not written to the output file
because

• cells are typically much more numerous than materials;

43

• some models such as RTK do not have user-provided identifiers for cells; and

• some models such as Geometria reserve cell IDs as implementation details, so some cell IDs correspond
to no physical point in space.

User-provided labels corresponding to cell and material IDs can both be obtained without having to run the
Omnibus executable. The following snippet uses the Python bindings (page 2) to print the meanings of all
matids and cellids in the model:

from omnibus.raytrace.load import load_mcnp
model = load_mcnp('ueki.runtpe')
print("Materials:")
print("\n".join(" {:3d} -> {:s}".format(c.compid, c.name)

for c in model.compositions))
print("Cells:")
print("\n".join(" {:3d} -> {:s}".format(i, geo.cell_to_label(i))

for i in range(geo.num_cells)))

Table 5: Available types for the [MODEL] database

Type Description Applicability

mcnp (page 44) MCNP model definition ‘Lava’ is enabled in this build
scale (page 50) SCALE KENO input file ‘SCALE_GEO’ is enabled in this build
geometria (page 52) Geometria input definition ‘GG’ is enabled in this build
gg Alias to geometria type —
rtk (page 53) RTK input specification
mesh (page 53) Explicit meshed problem in HDF5 format ‘HDF5’ is enabled in this build
geant (page 54) Geant4 GDML model input ‘Geant’ is enabled in this build
sword (page 54) SWORD model description ‘SWORD’ is enabled in this build
dagmc (page 55) DAGMC CAD geometry definition ‘DAGMC’ is enabled in this build
vera (page 56) VERA input specification ‘VERA’ is enabled in this build

3.6 MCNP INPUT: [MODEL=MCNP]

Exnihilo supports reading MCNP [18] input files through ORNL’s Lava library [7]. The user’s MCNP input
file must be processed through MCNP using the mcnp5 ix inp={inp} command in order to generate the
runtpe file that Lava requires. The Omnibus pre-processor does this automatically.

Note: If using Shift cell tallies with an MCNP model, the user must include a cell tally or input volumes for
desired cells in the MCNP input to ensure that volumes to automatically be propagated into Shift.

3.6.1 FEATURES

• Any MCNP5-compatible geometry is supported.

• MT cards for the materials are automatically converted to their equivalent SCALE IDs, so for example
6000 with a corresponding grph card will be converted to the SCALE ID for graphite, 3006000.

• In depletion calculations, groups of axis-aligned planes can be moved at each time step without
restarting (see [MODEL][MOVABLE=surfaces] (page 50))

• SDEF sources can be transported with Shift using the [SOURCE=mcnp] (page 61) source definition.

44

3.6.2 LIMITATIONS

• MCNP6 is not supported; MCNPX will not be supported.

• Library suffixes for nuclides in the material block are ignored: only the TMP (temperature) card on each
cell is used to determine the composition temperature. The composition temperature is then used when
loading CE nuclides.

• Tally definitions are ignored.

• MCNP sources cannot be automatically biased in hybrid modes.

• Only MT cards natively supported by MCNP5 will be interpreted as chemically bound elements.

3.6.3 NAMING

Geometry cell names are the same as the numerical cell “names” given in the cell block of the MCNP input.
Unlike MCNP, which can tally a single instance of a cell that is present in different arrays or universes with a
special input such as 2>4>1, Shift will lump all instances of a cell into the same tally.

Most material compositions processed from MCNP have the form mNNN, where NNN is the material name
specified on the m card. However, if the material is present in the cell definition block at multiple densities
and/or temperatures, multiple copies of the composition will be present. Lower-density compositions will
have the form mNNN (FF.F%), where FF.F is the percentage mass density compared to the highest-density
instance of the material.

3.6.4 NUCLIDE MAPPING

Exnihilo implements a number of hard-coded mappings to convert both bound and unbound MCNP nuclides
to their equivalent IDs in SCALE. The following translations are performed for unbound nuclides:

Table 6: Mappings between unusual nuclide IDs.

MCNP ID SCALE ID

1001 8001001
1002 8001002
27458 1027058
47510 1047110
48515 1048115
52527 1052127
52529 1052129
61548 1061148
67566 1067166
95642 95242
95242 1095242
95644 1095244

The MT cards in MCNP input mark that atoms in the material are chemically bound, so a S (α, β) collision
kernel for thermal energies is to be applied. In SCALE, individual nuclides are marked as having bound
collision data, so the following nuclides in bound materials in MCNP are translated to special SCALE IDs:

45

Table 7: Mappings between MCNP MT cards and SCALE IDs.

MTn ZAID SCALE ID

al27 13027 1013027
be 4009 3004009
be/o 4009 5004009
benz 1001 6001001

6000 5006000
6012 5006000

beo 4009 3004009
8016 8016

dortho 1002 4001002
dpara 1002 5001002
fe56 26056 1026000
grph 6000 3006000

6012 3006000
h/zr 1001 7001001
hortho 1001 4001001
hpara 1001 5001001
hwtr 1002 1002
lmeth 1001 1001001
lwtr 1001 1001
o/be 8016 5008016

8017 8017
8018 8018

o2/u 8016 1008016
8017 8017
8018 8018

poly 1001 9001001
sio2 14028 1014028

14029 1014029
14030 1014030

smeth 1001 2001001
u/o2 92238 92238
zr/h 40000 1040090

40090 1040090
40091 1040091
40092 1040092
40094 1040094
40096 1040096

command autoname
Attempt to provide MCNP material names using their compositions.

The autoname command is an experimental tool that loads the MCNP runtpe file into memory using
the Exnihilo Python bindings (page 2) and uses the MCNP-defined compositions to construct a “best
guess” of their name based on their most abundant elements.

46

Tip: After autoname has been run once, a user can extract the created names from the PROBLEM.inp.
omn file created in the run directory, replace the autoname command with those names, and modify
them as desired.

Creates mat_names

Creates mat_name_mno

parameter cell_raytrace
Transform cell labels into material IDs for raytracing.

Default False

Type boolean

Applicable when problem mode is raytrace

parameter extents
Bounding box for the active region of the geometry.

Setting the model boundary enables certain Exnihilo features that require “global” boundaries. These
include:

• Global mesh tallies

• Global initial fission source

• Automatic Shannon entropy mesh

• MCNP source discretization for Denovo

Default -1e+100 1e+100 -1e+100 1e+100 -1e+100 1e+100

Type locations for -X,+X,-Y,+Y,-Z,+Z (each element is a real number)

command input
Generate an MCNP runtpe file and set runtpe_path.

This command uses the version of MCNP configured with Exnihilo to generate a run tape. To change
the cross section lookup directory xsdir, set the environment variable DATAPATH before running the
Omnibus pre-processor. An informational message will acknowledge that the environment variable is
being used in the particular MCNP run.

Tip: The MCNP executable path can be overridden by modifying the execution environment with the
-e env.json argument to omnibus-run (page 15). Use a JSON environment file that looks like

{"cmake": {"MCNP_EXECUTABLE": "/path/to/mcnp5"}}

Creates runtpe_path

47

command m
Map ‘mat_name_mno’ to ‘mat_names’ from pairs or arrow-separated items.

Creates mat_name_mno

Creates mat_names

parameter mat_name_mno
MCNP material ‘names’ corresponding to the given mat_name override.

Default ---

Type Integer material numbers in MCNP (each element is a positive integer (optional
leading ‘m’))

postprocessor
The parameters mat_names and mat_name_mno must have the same length.

parameter mat_names
parameter mat_name

Override names for materials in the geometry.

Custom names can be added to the model that will be reflected in material plots inside VisIT and inside
post-processing data elements. MCNP material card numbers are specified alongside new names to
use:

mat_name_mno :mat_names
1 "sodium iodide"
2 "carbon steel"
13 polyethylene
14 iron
105 air
106 concrete

Default ---

Type list in which each element is a non-empty string

sublist [MOVABLE]
Geometry elements that can be modified during the simulation. See [MODEL][MOVABLE] (page 49).

Default (empty sublist)

database [RAYTRACE]
Volume calculation. See [MODEL][RAYTRACE] (page 49).

Optional

Applicable when problem mode is raytrace

parameter runtpe_path(advanced)
Path to the MCNP runtpe file.

Type file path for reading

parameter volume_cells
Cell labels corresponding to the given volume overrides.

48

Default ---

Type list of cell labels (each element is a string)

postprocessor
The parameters volumes and volume_cells must have the same length.

parameter volumes
Provide or override volumes for cells in the geometry.

Default ---

Units cm3

Type list in which each element is a positive real number

3.6.5 [MODEL][MOVABLE]

Table 8: Available types for the [MOVABLE] database

Type Description Applicability

surfaces (page 50) Movable surface group

3.6.6 [MODEL][RAYTRACE]

Volume calculation.

parameter axes
Axis/axes along which to fire rays for ray trace.

Default xyz

Type axis or axes (‘x’,’zy’,’xyz’)

parameter error_tolerance
Fraction of lost rays to tolerate before aborting.

Default 1e-05

Type real number inside (0, 1)

parameter max_local_warnings
Max number of lost ray warnings to print per domain.

Default 10

Type non-negative integer

parameter num_batches
Number of batches to use for estimating variance.

Default 8

Type positive integer

parameter ray_spacing
Average spacing between rays in each batch.

Units cm3

49

Type positive real number

parameter rays_deterministic
Use face midpoints rather than stratified sampling.

Default False

Type boolean

parameter trace
Whether to trace materials or cell volumes.

Default cell

Type mat or cell

3.6.7 [MODEL][MOVABLE=SURFACES]

The “movable” surface option allows the translation of multiple surfaces simultaneously in the MCNP model.
Currently this works only for simple axis-aligned planes.

Warning: Because translations and surface deduplication are applied while generating the runtpe file,
moving one surface label may end up affecting other coincident surfaces. Exnihilo will raise an error
during setup if this happens: the input deck will need to be modified to remove coincident planes or
include all equivalent (coincident) surfaces in the surface group specification.

parameter initial
Movement to apply before the first transport.

Default 0.0

Units cm

Type real number

parameter name
Name of the surface group.

Type string without special characters

parameter surfaces
List of MCNP surface labels to move over time.

Type list in which each element is a positive integer

3.7 SCALE INPUT: [MODEL=SCALE]

As an alternative to SCALE’s CSAS-Shift sequence, the geometry and composition definitions from a SCALE
input file can be processed and run through Omnibus. Any valid SCALE sequence inputs with a single
GEOMETRY and COMPOSITION blocks can be transported on automatically.

Details on defining SCALE geometry inputs may be found in the SCALE manual [2].

3.7.1 FEATURES

• Supports KENO-V.a and KENO-VI geometry definitions, including geometries defined as part of a
sequence (such as MAVRIC or CSAS-Shift).

• Supports all standard composition definitions.

50

3.7.2 LIMITATIONS
• Only the GEOMETRY and COMP data blocks from the SCALE input will be used. The sequence

itself is ignored, as are all other blocks (such as parameters and plotting inputs). This includes cross
section processing blocks: see Multigroup physics: [PHYSICS=mg] (page 96) for specifying the
physics treatment through Omnibus.

• Only the first one of each of those blocks will be used. If multiple sequences are chained together in
the input, all but the first will be ignored.

If no composition block is present, then the user must specify compositions separately; this advanced use
case is outside the scope of the manual.

3.7.3 NAMING
For KENO-VI geometries, cell names take the form unit.instance, where “unit” is the integer unit number,
and “instance” is the index of the media instance in the list of media for that unit.

Composition names are saved as media N, where N is the media number specified in the composition block.

3.7.4 GEOMETRY CONVENTIONS
The legacy geometry implementation in KENO differs from the new Geometria-powered implementation,
which leads to confusingly different conventions that will hopefully be resolved. Until then, some of the
differences are sketched out here.

• A universe in Geometria generally corresponds to a unit in SCALE. However, each instance of an array
placed as a hole (in KENO-VI) is also a universe.

• Numbering in Geometria generally uses zero-based indexing, so the lower-left element in an array has
coordinates [0 0 0] in the output.

• The “sense” of a surface or shape in Geometria generally takes the opposite sign of an input in a KENO
region definition vector. See the [UNIVERSE][CELL] (page 244) section for more details.

parameter input
Path to the KENO VI input file.

Type file path for reading (extension ‘.inp’)

database [RAYTRACE]
Volume calculation. See [MODEL][RAYTRACE] (page 49).

Optional
Applicable when problem mode is raytrace

parameter volume_cells
Cell labels corresponding to the given volume overrides.

Default ---

Type list of cell labels (each element is a string)

postprocessor
The parameters volumes and volume_cells must have the same length.

parameter volumes
Provide or override volumes for cells in the geometry.

Default ---

Units cm3

Type list in which each element is a positive real number

51

3.8 GEOMETRIA INPUT: [MODEL=GEOMETRIA]

The Geometria (internally designated “GG”) geometry engine underpins the new SCALE geometry imple-
mentation. Geometria supports a less automatic but more rigorous geometry definition than KENO. Its input
is an Omnibus-style problem definition (see Geometria Input Description (page 233)) that is translated to an
XML file.

This input model only supports geometry definitions; compositions must be input either via an HDF5 input
file or in a [COMP] block (page 106).

command input
Generate a Geometria XML representation from an .gg.omn input.

Creates xml_path

database [RAYTRACE]
Volume calculation. See [MODEL][RAYTRACE] (page 49).

Optional

Applicable when problem mode is raytrace

parameter simplify_max_surfaces(advanced)
Threshold for making a “complex” cell “simple.”

In the GG implementation, a “simple” cell is a cell in which crossing a boundary always causes a
particle to leave a cell. (An example of a simple cell is the moderator region inside a square and outside
a circle.) Some cells, however, have internal surface boundaries that can be crossed while remaining
inside the cell. (An example of a “complex” cell is a square region with two non-overlapping squares
excluded. Crossing one of the inner planes that comprise the squares does not necessarily put the
particle inside the inner squares.) The bookkeeping for a particle inside these cells is more complicated
than the simple cell, because all the distances along the particle’s path must be calculated and tracked,
and every surface crossing requires the cell’s logic expression to be reevaluated to determine whether
the particle is inside.

If a complex cell is erroneously treated as simple, tracking errors will result; so it is necessary to
be conservative in initially calling a cell complex. In GG, a cell is assumed complex if it contains
a “positive” shape in its definition (i.e., it is the “outside” of a shape). This has the unfortunate
consequence of forcing the assumption that common simple shapes, such as a pin inside a pin cell, are
in fact complex. The solution is a piece of code that checks a cell at construction time. It loops over all
combinations of the surface IDs connected to the cell to determine if any surface crossing will allow a
particle inside the cell to remain inside the cell:

• Fill the “surface sense” vector with the next combination of bits

• If the logic expression evaluates to “false,” skip this iteration

• Loop over every surface sense

– Flip this surface’s sense

– If the cell logic expression still evaluates to “true,” the cell is definitely complex. Return
early.

– Restore the flipped sense

52

The performance of the above loop scales exponentially with the number of surfaces connected to a
cell. (If the cell only has two surfaces, 4 outer logic evaluations must be made; for four surfaces, 16
must be made; for ten surfaces, 1024 must be made.) Therefore, this parameter defaults to checking
only cells composed of at most 10 surfaces. Testing results show that this has a negligible build-time
penalty but can improve tracking time by almost a factor of two, as in the case of the C5G7 benchmark,
in which each pin cell would be marked “complex” without this code.

Default 10

Type integer in the range [0,16)

parameter volume_cells
Cell labels corresponding to the given volume overrides.

Default ---

Type list of cell labels (each element is a string)

postprocessor
The parameters volumes and volume_cells must have the same length.

parameter volumes
Provide or override volumes for cells in the geometry.

Default ---

Units cm3

Type list in which each element is a positive real number

parameter xml_path(advanced)
Path to the GG geometry XML input file.

Type file path for reading (extension ‘.xml’)

3.9 REACTOR TOOLKIT INPUT: [MODEL=RTK]
RTK is an internal geometry engine used for PWR geometry under the VERA framework produced by CASL.
The RTK model implemented by Omnibus reads a geometry from an XML input file. In general, the Insilico
front-end should be used for creating reactors with RTK geometries.

parameter input
Path to the RTK geometry XML or HDF5 file.

Type file path for reading (extension ‘.xml’ or ‘.h5’)

3.10 BRICK MESH INPUT: [MODEL=MESH]
The “mesh” model type allows a discretized problem to be transported on in Denovo and Shift. It is defined
by an external HDF5 file with a field of materials, mixtures, and (optionally) a source description. The file
format’s specification is described in HDF5 Mesh Model Specification (page B–4)

This file format is primarily intended for Denovo problems, both for analytical benchmarks and allowing the
user to “restart” from a previously discretized geometry using the make-denovo-model (page 21) utility. Shift
does not support mix tables or the source description.

parameter input
Path to the mesh geometry hdf5 file.

Type file path for reading (extension ‘.h5’)

postprocessor
Check that the mesh model is in the correct format.

53

3.11 GEANT4 INPUT: [MODEL=GEANT]

Exnihilo supports Geant4 [15] inputs stored as GDML files. The materials and geometry are both read
through Exnihilo.

Caution: Because Geant4 defines a number of nuclides that may be important to high-energy physics
but that are not important to neutronics calculations, it may be necessary to use the omit_zaid and
orig_zaid/subs_zaid options in the physics if those nuclides are not present on the cross section
libraries.

3.11.1 LIMITATIONS

• Tracking particles in Shift is not supported. Currently, Geant4 can only be discretized in Denovo or
ray-traced in Python.

parameter input
Path to the Geant4 GDML input file.

Type file path for reading (extension ‘.gdml’)

database [RAYTRACE]
Volume calculation. See [MODEL][RAYTRACE] (page 49).

Optional

Applicable when problem mode is raytrace

parameter volume_cells
Cell labels corresponding to the given volume overrides.

Default ---

Type list of cell labels (each element is a string)

postprocessor
The parameters volumes and volume_cells must have the same length.

parameter volumes
Provide or override volumes for cells in the geometry.

Default ---

Units cm3

Type list in which each element is a positive real number

3.12 SWORD INPUT: [MODEL=SWORD]

The SoftWare for Optimization of Radiation Detectors [8] interface requires files generated by the release
(non-beta) version of SWORD 6.0 or higher, as only new versions write the problem’s geometry and material
definitions as Geant4 GDML files.

In addition to the geometry and material definitions, the SWORD model supports source definitions using
[SOURCE=sword] (page 62) and can construct adjoint sources (tallies) using [TALLY][SWORD] (page 141).

54

3.12.1 LIMITATIONS

• Since SWORD’s tracking engine is based on that of Geant (page 54), tracking particles in Shift is not
supported. Only Denovo discretization and raytracing are supported.

command input
Generate a binary SWORD representation from a .sword input.

Creates xdr_path

parameter xdr_path(advanced)
Path to the SWORD binary input file.

Type file path for reading (extension ‘.xdr’)

3.13 DAGMC INPUT: [MODEL=DAGMC]

Direct Accelerated Geometry Monte Carlo (DAGMC) is a package in MOAB that has been integrated into
Exnihilo to support CAD-based models. This package allows for Monte Carlo transport on complex 3D
geometries that have been created by traditional solid modeling software. The model must be pre-processed
so that the geometry is a faceted HDF5 file, and volumes must be tagged with specific properties.

Table 9: MOAB volume properties used in the DAGMC model.

Name Description

mat Material ID (must be an integer), or the value “graveyard”.
label Cell label, ignored for the graveyard volume.
implicit_mat Specified only in the graveyard cell, the matid that will be

given to cells marked as implicit complements.

There can only be a single graveyard cell, which will be given the cell label “EXTERIOR,” and there can be
multiple implicit complements, which all share the label “IMPLICIT_COMPLEMENT”.

3.13.1 FEATURES

• Any faceted CAD geometry of varying complexity can be used.

• Reflecting boundaries are supported.

3.13.2 LIMITATIONS

• Labeling materials by name is not supported. Volumes in the geometry must be tagged with the
corresponding material ID.

• Volumes without material labels will be given a matid of 0.

• The extents of the geometry must be an axis-aligned rectangular prism.

parameter input
Path to the MOAB facet file.

Type file path for reading (extension ‘.h5m’)

parameter mat_input
Path to the material composition file.

55

Optional

Type file path for reading (extension ‘.h5’)

database [RAYTRACE]
Volume calculation. See [MODEL][RAYTRACE] (page 49).

Optional

Applicable when problem mode is raytrace

parameter volume_cells
Cell labels corresponding to the given volume overrides.

Default ---

Type list of cell labels (each element is a string)

postprocessor
The parameters volumes and volume_cells must have the same length.

parameter volumes
Provide or override volumes for cells in the geometry.

Default ---

Units cm3

Type list in which each element is a positive real number

3.14 VERA INPUT: [MODEL=VERA]

The model for a Virtual Environment for Reactor Applications (VERA) [9] XML input can be run through
the Omnibus front end. The material compositions will be built from the model. Since the VERA geometry
can only describe the geometry from the core out through the reactor vessel, the VERA input allows for
an Omnibus input file defining the ex-core geometry to be specified. If this ex-core file is given, it will be
included in the built geometry.

The [TALLY][VERA] (page 134) can be used to create a tally for the outermost region of the vessel. This
tally can then be optimized for when running in hybrid mode.

parameter input
Path to the VERA XML input file.

Type file path for reading (extension ‘.xml’)

3.15 PARTICLE SOURCE DEFINITIONS: [SOURCE]

The source database specifies the source particle distribution for a fixed-source problem, as well as the starting
source for an eigenvalue problem. Any combination of types is allowed.

The total strength of all sources is used as a global multiplier for all tallies in fixed-source mode. (The total
strength is ignored for the starting source in kcode mode; only the relative strengths of the sources are used.)
An alternative to modifying the total source strength is to modify the normalization property of the tallies.

If using Shift with mode kcode, and no source is provided, the default source is a uniform source with global
extents isotropically emitting neutrons with a U-235 watt spectrum. Since some geometry types cannot

56

determine global extents by default (e.g., MCNP requires an extents keyword), be warned that this default
may fail to sample enough particles in fissionable regions.

Table 10: Available types for the [SOURCE] database

Type Description Applicability

separable
(page 57)

Source separable in space, energy, an-
gle

fissionmesh
(page 59)

Fixed fission source from a Shift tally
or mesh source

mesh (page 61) Discretized source from the mesh
model HDF5 file

model is ‘mesh’ and solver is ‘denovo’

mcnp (page 61) Source from MCNP SDEF cards model is ‘mcnp’
sword (page 62) SWORD source/spectra definitions model is ‘sword’
material (page 63) Volumetric material composition emis-

sion
surface_census
(page 64)

Emit particles from a pre-computed sur-
face source

sourcerer
(page 65)

Use a Denovo solution as a fission
source

solver is ‘shift’; solver is ‘denovo’; and
problem mode is kcode

3.15.1 [SOURCE=SEPARABLE]

Exnihilo views the source particle type as being an extension of the energy phase space. This facilitates hybrid
methods, since in deterministic solvers the neutron and photon groups are adjacent and treated identically,
and it makes some source definitions (such as naturally emitting materials) more straightforward.

parameter allow_biasing
Enable source biasing for hybrid problem modes.

Default False

Type boolean

database [ANGLE]
Particle angular distribution. See [SOURCE][ANGLE] (page 66).

Default (empty isotropic database)

parameter biased_distribution_sample_attempts(advanced)
Number of distribution sampling attempts before abandoning the current cell/group phase space.

Default 1000000

Type positive integer

parameter biased_src_sample_attempts(advanced)
Number of sampling attempts of a biased source before declaring a particle lost.

Default 10

Type positive integer

parameter cell_only

57

parameter cell
Emit particles only in the given cells.

The cell_only criteria can be used in conjunction with fissionable_only and material_only,
where it is combined using an and operation (i.e., emit particles in the given cells and in the given
materials).

Optional

Type list in which each element is a string

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

database [ENERGY]
Energy spectrum. See [SOURCE][ENERGY] (page 66).

Default Watt spectrum when in ‘kcode’ mode

parameter fissionable_only
parameter fis

Emit particles only in fissionable regions.

The fissionable_only criteria can be used in conjunction with material_only and cell_only,
where it is combined using an and operation (i.e., emit particles in fissionable materials and in the
given cells).

Default True if ‘kcode’ mode

Type boolean

parameter l2_error
Maximum requested source discretization L2 error.

Default 0.01

Type real number inside (0, 1)

Applicable when using Denovo or hybrid

parameter material_only
parameter mat

Emit particles only in the given materials.

The material_only criteria can be used in conjunction with fissionable_only and cell_only,
where it is combined using an and operation (i.e., emit particles in the given materials and in the given
cells).

Optional

Type list in which each element is a non-empty string

parameter max_samples
Maximum number of point samples to use for discretization.

58

Default 10000000000.0

Type positive integer

Applicable when using Denovo or hybrid

parameter name
Short title or label for the source.

Default type of the source database

Type string without special characters

parameter num_rejection_samples
parameter rej

How many samples to try before declaring a particle ‘lost.’

Default 50000

Type positive integer

parameter samples_per_batch
parameter batch_samples

Number of point samples per discretization batch.

Default 100000.0

Type positive integer

Applicable when using Denovo or hybrid

database [SHAPE]
Spatial distribution type. See [SOURCE][SHAPE] (page 66).

parameter strength
parameter q

Source strength.

Default 1.0

Units particle
s

Type positive real number

3.15.2 [SOURCE=FISSIONMESH]

The fission mesh source allows a fission neutron production mesh tally from a prior run (kcode or fixed
source) to be used as a source. This source could either be a starting source in a kcode calculation (to reduce
the number of inactive cycles needed) or a fixed source (so that a coupled neutron-gamma problem can be
run separately from the kcode calculation). The input parameter points to the name of the tallies.h5 file;
and the mesh_tally_name parameter should be the name of the fission mesh tally.

By default, this source uses a U-235 energy spectrum.

parameter allow_biasing
Enable source biasing for hybrid problem modes.

Default False

Type boolean

59

parameter biased_distribution_sample_attempts(advanced)
Number of distribution sampling attempts before abandoning the current cell/group phase space.

Default 1000000

Type positive integer

parameter biased_src_sample_attempts(advanced)
Number of sampling attempts of a biased source before declaring a particle lost.

Default 10

Type positive integer

parameter cell_averaged
parameter avg

Whether the field values are volume-averaged strengths.

Type boolean

Applicable when format is source

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

preprocessor (advanced)
Default energy spectrum is U-235 Watt spectrum.

database [ENERGY]
Energy spectrum. See [SOURCE][ENERGY] (page 66).

Default Watt spectrum when in ‘kcode’ mode

parameter field
Path to the source definition in the input file.

Default ‘strength’ if cell-averaged, else ‘pdf’

Type string

Applicable when format is source

parameter format
Format of hdf5 file.

Default tally

Type source or tally

parameter input
Name of file containing source distribution.

Type file path for reading (extension ‘.h5’)

parameter name
Short title or label for the source.

60

Default type of the source database

Type string without special characters

parameter num_rejection_samples
parameter rej

How many samples to try before declaring a particle ‘lost.’

Default 50000

Type positive integer

parameter strength
parameter q

Source strength.

Default 1.0

Units particle
s

Type positive real number

parameter tally_name
Name of the fission source rate mesh tally.

Type string without special characters

Applicable when format is tally

3.15.3 [SOURCE=MESH]

This “mesh” source is specifically for manually constructed Denovo source strengths and multigroup spectra.
To use a field of source strengths in Shift, use the mesh shape (page 76) as part of a separable source.

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the source.

Default type of the source database

Type string without special characters

3.15.4 [SOURCE=MCNP]

The MCNP source uses the Lava library to extract and use the source definition from an SDEF card. It supports
automatic interpretation of the particle type (defaulting to the problem mode) and the strength (from the WGT
parameter) as well as the actual distributions themselves.

The MCNP biasing parameters will be respected when sampling this source. This also applies to creating a
discrete Denovo source from an MCNP source: regions where the source is biased to emit more frequently
will have better statistical estimates of the source. The weight is accounted for during discretization to ensure
that the total source strength is correct as the number of source samples approaches infinity.

61

It is important to note that currently the MCNP source is replicated across processors when discretizing. This
means that MCNP sources that encompass many cells, especially with a fine-group energy structure, may
require more memory than an individual CPU core can allocate.

Note: Currently, the MCNP source is only available if the MCNP geometry is being used.

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter extents
Optional bounding box for MCNP source.

To allow for an MCNP source to be discretized in parallel, it is necessary to replicate the spatial mesh
that overlaps the source. By default, this option replicates the entire spatial mesh. On large problems,
fully replicating the entire mesh may cause the program to abort for lack of memory.

The solution is to manually define an axis-aligned bounding box that encloses the source region. Thus
only the part of the mesh containing the source is replicated.

Tip: When the source discretization takes place, an informational message will print the ‘actual’
extents (based on sample particles) of the source bounding box. If the source boundaries are not readily
available, it may be sufficient to discretize the source on a few-cell mesh problem and use the sampled
extents (expanded by some fraction) as the bounding box for the full problem run.

Default -1e+100 1e+100 -1e+100 1e+100 -1e+100 1e+100

Type locations for -X,+X,-Y,+Y,-Z,+Z (each element is a real number)

parameter name
Short title or label for the source.

Default type of the source database

Type string without special characters

3.15.5 [SOURCE=SWORD]

This source option imports source descriptions from the SWORD input model. Currently, it only works with
Denovo and is incompatible with other source definitions.

parameter allow_biasing
Enable source biasing for hybrid problem modes.

Default False

Type boolean

parameter biased_distribution_sample_attempts(advanced)
Number of distribution sampling attempts before abandoning the current cell/group phase space.

62

Default 1000000

Type positive integer

parameter biased_src_sample_attempts(advanced)
Number of sampling attempts of a biased source before declaring a particle lost.

Default 10

Type positive integer

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the source.

Default type of the source database

Type string without special characters

3.15.6 [SOURCE=MATERIAL]

Volumetric material composition emission.

parameter allow_biasing
Enable source biasing for hybrid problem modes.

Default False

Type boolean

parameter biased_distribution_sample_attempts(advanced)
Number of distribution sampling attempts before abandoning the current cell/group phase space.

Default 1000000

Type positive integer

parameter biased_src_sample_attempts(advanced)
Number of sampling attempts of a biased source before declaring a particle lost.

Default 10

Type positive integer

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

sublist [MATERIAL]
Definition for a single source material. See [SOURCE][MATERIAL] (page 67).

63

parameter name
Short title or label for the source.

Default type of the source database

Type string without special characters

parameter num_rejection_samples
parameter rej

How many samples to try before declaring a particle ‘lost.’

Default 50000

Type positive integer

database [RAYTRACE]
Material raytrace options. See [SOURCE][RAYTRACE] (page 67).

sublist [SPECTRUM]
Material source spectrum. See [SOURCE][SPECTRUM] (page 66).

3.15.7 [SOURCE=SURFACE_CENSUS]

Emit particles from a pre-computed surface source.

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter input
Surface particle input file.

Type file path for reading (extension ‘.h5’)

parameter name
Short title or label for the source.

Default type of the source database

Type string without special characters

parameter surfaces
Surfaces in input to read.

Type list in which each element is a string

parameter translation
Translates the particle by the given transform.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

64

3.15.8 [SOURCE=SOURCERER]

Use a Denovo solution as a fission source.

parameter a
Value for the ‘a’ constant in Watt equation.

Units MeV

Type positive real number

Applicable when use_watt_spectrum is True

parameter b
Value for the ‘b’ constant in Watt equation.

Units 1
MeV

Type positive real number

Applicable when use_watt_spectrum is True

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the source.

Default type of the source database

Type string without special characters

preprocessor (advanced)
Default Watt spectrum to U-235.

Applicability use_watt_spectrum is True

command nuclide
Produce a Watt spectrum corresponding to the given nuclide.

Creates a

Creates b

parameter num_rejection_samples
parameter rej

How many samples to try before declaring a particle ‘lost.’

Default 50000

Type positive integer

parameter use_watt_spectrum
parameter use_watt

Forces the energy spectrum to be a Watt spectrum.

Default True

Type boolean

65

3.15.9 [SOURCE][SHAPE]

Table 11: Available types for the [SHAPE] database

Type Description Applicability

box (page 68) Axis-aligned cuboid shape
cos_box (page 69) Box, cosine distribution in multiple dimensions
flattened_cos_box (page 70) Box, 1 − (1 − cos)2 distribution in multiple dimensions
squared_cos_box (page 71) Box, (1 − cos)2 distribution in multiple dimensions
cyl (page 72) Axis-aligned cylinder shape
cylinder Alias to cyl type —
cylshell (page 73) Cylindrical shell shape
cylindershell Alias to cylshell type —
sphere (page 74) Sphere shape
sphereshell (page 74) Spherical shell shape
point (page 75) Single point
multipoint (page 75) Multiple points
global (page 76) Box covering the geometry extents
mesh (page 76) Discretized mesh source

3.15.10 [SOURCE][ENERGY]

Table 12: Available types for the [ENERGY] database

Type Description Applicability

histogram (page 77) Histogram energy distribution
mono (page 78) Monoenergetic line energy distribution
lines (page 78) Multiple line energy distribution
watt (page 79) Watt fission energy spectrum
origen (page 79) ORIGEN decay source spectrum input

3.15.11 [SOURCE][ANGLE]

Table 13: Available types for the [ANGLE] database

Type Description Applicability

isotropic (page 80) Isotopic in angle
mono (page 81) Monodirectional

3.15.12 [SOURCE][SPECTRUM]

The [SPECTRUM] energy distributions have exactly the same options as the [ENERGY] (page 66) entries
with the same name, except that spectra also have a required per_decay entry and a name for each. This
allows a single material source to emit multiple particles with different spectra at different rate per unit of
activity.

Table 14: Available types for the [SPECTRUM] database

66

Type Description Applicability

histogram (page 81) Histogram energy distribution
mono (page 81) Monoenergetic line energy distribution
lines (page 82) Multiple line energy distribution
watt (page 82) Watt fission energy spectrum
origen (page 83) ORIGEN decay source spectrum input

3.15.13 [SOURCE][MATERIAL]

Definition for a single source material.

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Name of the material with this source.

Type string

parameter specific_activity
parameter activity

List of specific activity for each spectra.

Units becquerel
kg

Type list in which each element is a positive real number

postprocessor
The parameters spectra and specific_activity must have the same length.

parameter spectra
List of source spectra names for this material.

Type list in which each element is a string

3.15.14 [SOURCE][RAYTRACE]

Material raytrace options.

parameter axes
Axis/axes along which to fire rays for ray trace.

Default xyz

Type axis or axes (‘x’,’zy’,’xyz’)

parameter error_tolerance
Fraction of lost rays to tolerate before aborting.

Default 1e-05

67

Type real number inside (0, 1)

parameter max_local_warnings
Max number of lost ray warnings to print per domain.

Default 10

Type non-negative integer

parameter rays_deterministic
Use face midpoints rather than stratified sampling.

Default False

Type boolean

parameter rays_per_face
Number of ray trace rays to be fired per mesh face.

Default 4

Type positive square integer

parameter x
Raytrace mesh edges along the X axis.

Type monotonically increasing list with at least two values (each element is a real number)

parameter y
Raytrace mesh edges along the Y axis.

Type monotonically increasing list with at least two values (each element is a real number)

parameter z
Raytrace mesh edges along the Z axis.

Type monotonically increasing list with at least two values (each element is a real number)

3.15.15 [SOURCE][SHAPE=BOX]

Axis-aligned cuboid shape.

command box
Expand into parameters xmin, xmax, ymin, ymax, zmin, and zmax.

Creates xmin

Creates xmax

Creates ymin

Creates ymax

Creates zmin

Creates zmax

parameter xmax
Maximum x coordinate of box.

Type real number

68

parameter xmin
Minimum x coordinate of box.

Type real number

parameter ymax
Maximum y coordinate of box.

Type real number

parameter ymin
Minimum y coordinate of box.

Type real number

parameter zmax
Maximum z coordinate of box.

Type real number

parameter zmin
Minimum z coordinate of box.

Type real number

3.15.16 [SOURCE][SHAPE=COS_BOX]

Box, cosine distribution in multiple dimensions.

command box
Expand into parameters xmin, xmax, ymin, ymax, zmin, and zmax.

Creates xmin

Creates xmax

Creates ymin

Creates ymax

Creates zmin

Creates zmax

parameter cos_dir
Directions for which the source has a cosine distribution.

Default z

Type axis or axes (‘x’,’zy’,’xyz’)

deleted num_cdf_bins
Entry num_cdf_bins has been deleted: The cosine CDF is integrated analytically.

parameter xmax
Maximum x coordinate of box.

Type real number

parameter xmin
Minimum x coordinate of box.

69

Type real number

parameter ymax
Maximum y coordinate of box.

Type real number

parameter ymin
Minimum y coordinate of box.

Type real number

parameter zmax
Maximum z coordinate of box.

Type real number

parameter zmin
Minimum z coordinate of box.

Type real number

3.15.17 [SOURCE][SHAPE=FLATTENED_COS_BOX]

Box, 1 − (1 − cos)2 distribution in multiple dimensions.

command box
Expand into parameters xmin, xmax, ymin, ymax, zmin, and zmax.

Creates xmin

Creates xmax

Creates ymin

Creates ymax

Creates zmin

Creates zmax

parameter cos_dir
Directions for which the source has a flattened cosine distribution.

Default z

Type axis or axes (‘x’,’zy’,’xyz’)

deleted num_cdf_bins
Entry num_cdf_bins has been deleted: The cosine CDF is integrated analytically.

parameter xmax
Maximum x coordinate of box.

Type real number

parameter xmin
Minimum x coordinate of box.

Type real number

70

parameter ymax
Maximum y coordinate of box.

Type real number

parameter ymin
Minimum y coordinate of box.

Type real number

parameter zmax
Maximum z coordinate of box.

Type real number

parameter zmin
Minimum z coordinate of box.

Type real number

3.15.18 [SOURCE][SHAPE=SQUARED_COS_BOX]

Box, (1 − cos)2 distribution in multiple dimensions.

command box
Expand into parameters xmin, xmax, ymin, ymax, zmin, and zmax.

Creates xmin

Creates xmax

Creates ymin

Creates ymax

Creates zmin

Creates zmax

parameter cos_dir
Directions for which the source has a squared cosine distribution.

Default z

Type axis or axes (‘x’,’zy’,’xyz’)

parameter xmax
Maximum x coordinate of box.

Type real number

parameter xmin
Minimum x coordinate of box.

Type real number

parameter ymax
Maximum y coordinate of box.

Type real number

71

parameter ymin
Minimum y coordinate of box.

Type real number

parameter zmax
Maximum z coordinate of box.

Type real number

parameter zmin
Minimum z coordinate of box.

Type real number

3.15.19 [SOURCE][SHAPE=CYL]
The cylinder shape is defined along one of the three cartesian axes. Its origin (base) is defined as the center
point of the lower circular face. The height extends in the positive direction from the origin along the given
axis.

parameter axis
Axis of the cylinder.

Type axis (‘x’,’y’,’z’)

parameter height
parameter h

Height of cylinder from the base.

Type real number

command origin
Expand into parameters origin_x, origin_y, and origin_z.

Creates origin_x

Creates origin_y

Creates origin_z

parameter origin_x
parameter xo

X coordinate of the center of the cylinder’s base.

Type real number

parameter origin_y
parameter yo

Y coordinate of the center of the cylinder’s base.

Type real number

parameter origin_z
parameter zo

Z coordinate of the center of the cylinder’s base.

Type real number

parameter radius
parameter r

Radius of the cylinder.

Type real number

72

3.15.20 [SOURCE][SHAPE=CYLSHELL]

Cylindrical shell shape.

parameter axis
Axis of the cylinder.

Type axis (‘x’,’y’,’z’)

parameter height
parameter h

Height of cylinder from the base.

Type real number

parameter inner_radius
parameter ir

Inner radius of the cylindrical shell.

Type real number

command origin
Expand into parameters origin_x, origin_y, and origin_z.

Creates origin_x

Creates origin_y

Creates origin_z

parameter origin_x
parameter xo

X coordinate of the center of the cylinder’s base.

Type real number

parameter origin_y
parameter yo

Y coordinate of the center of the cylinder’s base.

Type real number

parameter origin_z
parameter zo

Z coordinate of the center of the cylinder’s base.

Type real number

parameter outer_radius
parameter or

Outer radius of the cylindrical shell.

Type real number

73

3.15.21 [SOURCE][SHAPE=SPHERE]

Sphere shape.

command origin
Expand into parameters origin_x, origin_y, and origin_z.

Creates origin_x

Creates origin_y

Creates origin_z

parameter origin_x
parameter xo

X coordinate of sphere source origin.

Type real number

parameter origin_y
parameter yo

Y coordinate of sphere source origin.

Type real number

parameter origin_z
parameter zo

Z coordinate of sphere source origin.

Type real number

parameter radius
parameter r

Radius of sphere source.

Type real number

3.15.22 [SOURCE][SHAPE=SPHERESHELL]

Spherical shell shape.

parameter inner_radius
parameter ir

Inner radius of spherical shell.

Type real number

command origin
Expand into parameters origin_x, origin_y, and origin_z.

Creates origin_x

Creates origin_y

Creates origin_z

parameter origin_x
parameter xo

X coordinate of sphere source origin.

74

Type real number

parameter origin_y
parameter yo

Y coordinate of sphere source origin.

Type real number

parameter origin_z
parameter zo

Z coordinate of sphere source origin.

Type real number

parameter outer_radius
parameter or

Outer radius of spherical shell.

Type real number

3.15.23 [SOURCE][SHAPE=POINT]

Single point.

command point
Expand into parameters x, y, and z.

Creates x

Creates y

Creates z

parameter x
X position of point source.

Type real number

parameter y
Y position of point source.

Type real number

parameter z
Z position of point source.

Type real number

3.15.24 [SOURCE][SHAPE=MULTIPOINT]

Multiple points.

parameter probability
Probability of each point being selected.

Type list of non-negative floats (each element is a non-negative real number)

postprocessor
The parameters x, y, z, and probability must have the same length.

75

parameter x
X positions of point sources.

Type list in which each element is a real number

parameter y
Y positions of point sources.

Type list in which each element is a real number

parameter z
Z positions of point sources.

Type list in which each element is a real number

3.15.25 [SOURCE][SHAPE=GLOBAL]

The “global” source is a labor-saving way to attempt to sample particles inside the geometry. It works by
querying the geometry for a bounding box (currently, only RTK and SCALE geometries are supported),
and then sampling points uniformly inside that box. Any point outside the geometry will be rejected. The
sample_attempts parameter determines how many samples inside the bounding box to attempt before a
warning is emitted.

Warning: If the bounding box of the geometry is much different than the underlying geometry, the
rejection fraction may be high, and the source sampling may be very slow. This is especially true in the
case of fissionable-only sources, for which an additional rejection step is overlaid.

parameter sample_attempts
Number of geometry positions to sample per source particle.

Default 1000

Type positive integer

3.15.26 [SOURCE][SHAPE=MESH]

Discretized mesh source.

parameter cell_averaged
parameter avg

Whether the field values are volume-averaged strengths. See cell_averaged (page 60) in
[SOURCE=fissionmesh].

parameter field
Path to the source definition in the input file.

Default ‘strength’ if cell-averaged, else ‘pdf’

Type string

Applicable when format is source

parameter format
Format of hdf5 file.

76

Default tally

Type source or tally

parameter input
Name of file containing source distribution.

Type file path for reading (extension ‘.h5’)

parameter tally_name
Name of the fission source rate mesh tally.

Type string without special characters

Applicable when format is tally

3.15.27 [SOURCE][ENERGY=HISTOGRAM]

Histogram energy distribution.

parameter energy
parameter e

Histogram energy bin bounds.

Units eV

Type list of non-negative monotonically increasing floats (each element is a non-negative
real number)

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

parameter probability
parameter p

Probability of an energy bin being selected.

For a discrete source distribution with the following spectrum:

strength (p / eV / s)
5.0 +--------+

| |
4.0 | |

| |
3.0 +--------| |

| | |
2.0 +--+ | | |

| | +-----| | |
1.0 | |--| | | |

| | | | | |
0.0 |--|--|-----|--------|--------|

0 1 2 4 7 10 eV

the source strength (page 59) should be set to

qtot =

∫︁
q(E) dE = 30 p/s

and the input for the integrated probability for each bin will be:

77

energy:probability ! strength spectrum
0 0.067 ! p * 30 / 1 = 2
1 0.033 ! p * 30 / 1 = 1
2 0.1 ! p * 30 / 2 = 1.5
4 0.3 ! p * 30 / 3 = 3.
7 0.5 ! p * 30 / 3 = 5.

10 ---

Type list of non-negative floats (each element is a non-negative real number)

3.15.28 [SOURCE][ENERGY=MONO]

Monoenergetic line energy distribution.

parameter energy
parameter e

Source energy.

Units eV

Type positive real number

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

3.15.29 [SOURCE][ENERGY=LINES]

Multiple line energy distribution.

parameter energy
parameter e

Individual line energies.

Units eV

Type monotonically increasing list (each element is a positive real number)

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

parameter probability
parameter p

Probability of each line being selected.

Type list of non-negative floats (each element is a non-negative real number)

78

3.15.30 [SOURCE][ENERGY=WATT]

The Watt distribution samples a fission spectrum:

f (E) = c exp(−E/a) sinh(
√

bE)

where c is a normalization constant.

parameter a
Value for the ‘a’ constant in Watt equation.

Units MeV

Type positive real number

parameter b
Value for the ‘b’ constant in Watt equation.

Units 1
MeV

Type positive real number

preprocessor (advanced)
Default Watt spectrum to U-235.

command nuclide
Produce a Watt spectrum corresponding to the given nuclide.

Creates a

Creates b

3.15.31 [SOURCE][ENERGY=ORIGEN]

Reads photon spectra out of an ORIGEN master library.

command activities
Map ‘zaid’ to ‘activity’ from pairs or arrow-separated items.

Creates zaid

Creates activity

parameter activity
Activities of each nuclide.

Default (empty sublist)

Type list in which each element is a positive real number

Applicable when

• particle_type is p; and

• using an ORIGEN gamma library

postprocessor
The parameters zaid and activity must have the same length.

Applicability particle_type is p

79

Applicability using an ORIGEN gamma library

postprocessor
ORIGEN file type and source definition must be consistent.

parameter apply_origen_strength
Multiply the source strength by the strength of the ORIGEN distribution.

Default True

Type boolean

parameter input
parameter filename

File (f71/mpdkxgam) containing the ORIGEN-generated spectrum.

Default '/.../origen.rev04.mpdkxgam.data'

Type file path for reading

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

parameter source_type
parameter st

Indicates origin of the source.

Default based on source type

Type source type (a, alpha, alpha_neutron, an, d, delayed, delayed_neutron,
dn, g, gamma, n, neutron, p, photon, sf, sfn, spontaneous_fission,
spontaneous_fission_neutron, tn, total_gamma, total_neutron, or
total_photon)

parameter statepoint
Statepoint in the file from which to read the source.

Type non-negative integer

Applicable when using an ORIGEN concentration file

parameter zaid
Element/nuclide IDs (MZZZAAA).

Default (empty sublist)

Type list in which each element is a positive integer

Applicable when

• particle_type is p; and

• using an ORIGEN gamma library

3.15.32 [SOURCE][ANGLE=ISOTROPIC]

Note that when defining a source for Denovo calculations, the only allowable angular discretization is
isotropic.

80

3.15.33 [SOURCE][ANGLE=MONO]

Monodirectional.

parameter direction
parameter dir

Direction source particles are emitted.

Type length-3 float vector (each element is a real number)

3.15.34 [SOURCE][SPECTRUM=HISTOGRAM]

Histogram energy distribution.

parameter energy
parameter e

Histogram energy bin bounds.

Units eV

Type list of non-negative monotonically increasing floats (each element is a non-negative
real number)

parameter name
Name of the spectrum.

Type string without special characters

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

parameter per_decay
Particles emitted per decay.

Type positive real number

parameter probability
parameter p

Probability of an energy bin being selected.

Type list of non-negative floats (each element is a non-negative real number)

3.15.35 [SOURCE][SPECTRUM=MONO]

Monoenergetic line energy distribution.

parameter energy
parameter e

Source energy.

Units eV

Type positive real number

parameter name
Name of the spectrum.

81

Type string without special characters

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

parameter per_decay
Particles emitted per decay.

Type positive real number

3.15.36 [SOURCE][SPECTRUM=LINES]

Multiple line energy distribution.

parameter energy
parameter e

Individual line energies.

Units eV

Type monotonically increasing list (each element is a positive real number)

parameter name
Name of the spectrum.

Type string without special characters

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

parameter per_decay
Particles emitted per decay.

Type positive real number

parameter probability
parameter p

Probability of each line being selected.

Type list of non-negative floats (each element is a non-negative real number)

3.15.37 [SOURCE][SPECTRUM=WATT]

Watt fission energy spectrum.

parameter a
Value for the ‘a’ constant in Watt equation.

Units MeV

Type positive real number

parameter b
Value for the ‘b’ constant in Watt equation.

82

Units 1
MeV

Type positive real number

parameter name
Name of the spectrum.

Type string without special characters

preprocessor (advanced)
Default Watt spectrum to U-235.

command nuclide
Produce a Watt spectrum corresponding to the given nuclide.

Creates a

Creates b

parameter per_decay
Particles emitted per decay.

Type positive real number

3.15.38 [SOURCE][SPECTRUM=ORIGEN]

ORIGEN decay source spectrum input.

command activities
Map ‘zaid’ to ‘activity’ from pairs or arrow-separated items.

Creates zaid

Creates activity

parameter activity
Activities of each nuclide.

Default (empty sublist)

Type list in which each element is a positive real number

Applicable when

• particle_type is p; and

• using an ORIGEN gamma library

postprocessor
The parameters zaid and activity must have the same length.

Applicability particle_type is p

Applicability using an ORIGEN gamma library

postprocessor
ORIGEN file type and source definition must be consistent.

parameter apply_origen_strength
Multiply the source strength by the strength of the ORIGEN distribution.

83

Default True

Type boolean

parameter input
parameter filename

File (f71/mpdkxgam) containing the ORIGEN-generated spectrum.

Default '/.../origen.rev04.mpdkxgam.data'

Type file path for reading

parameter name
Name of the spectrum.

Type string without special characters

parameter particle_type
parameter pt

Particle type to emit.

Type particle type (n, neutron, p, or photon)

parameter per_decay
Particles emitted per decay.

Type positive real number

parameter source_type
parameter st

Indicates origin of the source.

Default based on source type

Type source type (a, alpha, alpha_neutron, an, d, delayed, delayed_neutron,
dn, g, gamma, n, neutron, p, photon, sf, sfn, spontaneous_fission,
spontaneous_fission_neutron, tn, total_gamma, total_neutron, or
total_photon)

parameter statepoint
Statepoint in the file from which to read the source.

Type non-negative integer

Applicable when using an ORIGEN concentration file

parameter zaid
Element/nuclide IDs (MZZZAAA).

Default (empty sublist)

Type list in which each element is a positive integer

Applicable when

• particle_type is p; and

• using an ORIGEN gamma library

84

3.16 PHYSICS ENGINES: [PHYSICS]

Omnibus currently supports two coupled-physics packages: multigroup (MG) and continuous energy (CE).
Continuous-energy physics is restricted to Shift; multigroup physics is usable by both Shift and Denovo.

Table 15: Available types for the [PHYSICS] database

Type Description Applicability

ce (page 85) SCALE continuous energy
physics

‘SCALE_CE’ is enabled in this build and solver is
‘shift’

mg (page 96) SCALE multigroup physics ‘SCALE_MG’ is enabled in this build
void (page 85) All materials are replaced with

void
/problem/mode is forward, adjoint, or
raytrace

sce Alias to ce type —
smg Alias to mg type —

3.16.1 VOID PHYSICS: [PHYSICS=VOID]

The special void physics type creates a one-group transport problem with void cross sections for all materials.
It is used primarily in conjunction with the raytrace visualization mode, but it can also be used for
preliminary model verification.

parameter mode
Particles to transport.

Default Default mode to ‘n’ for kcode, or based on sources if present

Type particle transport mode (n, neutron, np, p, photon, or pn)

parameter name
Label for the physics.

Default void

Type string without special characters

parameter num_groups(advanced)
Number of energy groups.

Default one for each particle type

Type positive integer

3.17 CONTINUOUS-ENERGY PHYSICS: [PHYSICS=CE]

The CE physics implementation in Shift is driven by AMPX-processed cross sections and tabulated physics
data. The methodology behind the AMPX cross section processing is documented in the AMPX manual [10],
and the physics processes are documented in the KENO section of the SCALE manual [2].

3.17.1 FEATURES

• Neutron only, photon only, and coupled neutron-photon problems

• Optional Doppler broadening interpolation between library temperatures at load time

• Optional Doppler-broadened resonance correction (DBRC) enables upscattering for high-Z nuclides

85

3.17.2 LIMITATIONS

• Photon cross sections do not include Bremsstrahlung reactions, so low-energy photon physics will not
perform as expected.

• Data inconsistencies in ENDF are propagated through AMPX and may result in errors or warnings
during transport.

• Photonuclear reactions are not supported.

command ampx_kerma
Load KERMA factors from an AMPX library.

Creates splice

parameter balance_tol(advanced)
Tolerance for printing a diagnostic about xs balance errors.

Default 0.005

Type real number inside (0, 1)

database [BROADEN]
Temperature-corrected cross section Doppler broadening. See [PHYSICS][BROADEN] (page 93).

Optional

Applicable when

• mode is n or np; and

• not using the pole method

command ce_lib
Set the CE library path using SCALE file resolution.

The FileNameAliases.txt file installed to the prefix directory (usually the same as $SCALE) is used
to resolve the data location. The possible values as of SCALE 6.2.3 follow.

Table 16: SCALE CE library path aliases in SCALE 6.2.

Path Description

ce ENDF/B-VII.1
ce_v7 ENDF/B-VII.0
ce_v7.0 ENDF/B-VII.0
ce_v7.1 ENDF/B-VII.1
ce_v7_endf ENDF/B-VII.0
ce_v7.0_endf ENDF/B-VII.0
ce_v7.1_endf ENDF/B-VII.1

If the Omnibus build in use has the CMake variable SCALE_HPC_DATA_DIR defined, Shift will prefer-
entially load HDF5 data from that instead of the XML files.

Creates ce_lib_path

parameter ce_lib_path
Path to SCALE CE Library XML or HDF5 file.

86

Type file path for reading (extension ‘.xml’ or ‘.h5’)

postprocessor
The SCALE CELibrary package must be enabled to use legacy XML CE data files.

Applicability CE library is the xml legacy format

parameter ce_pole_lib_path
Path to the HDF5 file containing pole and residue data.

Optional

Type file path for reading (extension ‘.h5’)

Applicable when

• mode is n or np; and

• CE library is in HDF5 format

parameter dbrc
Enable Doppler broadened rejection correction.

DBRC adjusts the free-gas sampling of elastic scattering. In particular, it adjusts the sampling of the
target nuclide speed when the target is a heavy nuclide.

This correction improves the accuracy of epithermal neutron scatter off of heavy nuclides. However,
because it increases the rejection fraction when sampling the elastic scattering kernel, it may incur a
performance penalty.

Default True

Type boolean

Applicable when mode is n or np

parameter dbrc_energy_max
Maximum incident neutron energy for DBRC.

Default 210.0

Units eV

Type positive real number

Applicable when dbrc is True

postprocessor
Parameter dbrc_energy_min must be less than dbrc_energy_max.

Applicability dbrc is True

parameter dbrc_energy_min
Minimum incident neutron energy for DBRC.

Default 0.4

Units eV

Type positive real number

Applicable when dbrc is True

87

parameter dbrc_lib_path
Absolute path to the DBRC data directory.

This option can be used to override the default path to the SCALE CE DBRC data. It can only be used
with the legacy (xml) format cross sections; HDF5 cross section libraries include the DBRC data as a
new temperature-independent reaction type.

Table 17: Default DBRC data paths in SCALE 6.2.

XML CE library path DBRC library path

$DATA/ce_v7.0_endf.xml $DATA/cekenolib_7.0/dbrc/
$DATA/ce_v7.1_endf.xml $DATA/cekenolib_7.1/dbrc/

Default $DATA/cekenolib_7.X/dbrc/

Type directory path for reading

Applicable when

• CE library is the xml legacy format; and

• dbrc is True

parameter disable_collision_yields
Disables banking photons from all neutron collision reactions, but not from fission.

Default False

Type boolean

Applicable when mode is np

command energy_limits
Expand into parameters n_energy_min and n_energy_max.

Creates n_energy_min

Creates n_energy_max

database [FISSION]
Fission-kinetics parameters. See [PHYSICS][FISSION] (page 94).

Default (empty database)

Applicable when neutrons are being transported

parameter kappa_library
Read neutron fission and capture heating from the provided libary.

Optional

Type file path for reading (extension ‘.h5’)

Applicable when mode is n or np

parameter mixture_ordering(advanced)
Internal sorting criterion for nuclides in the mix table.

88

Default legacy

Type legacy, ascending_density, descending_density, ascending_zaid, or
descending_zaid

parameter mode
Particles to transport.

Default Default mode to ‘n’ for kcode, or based on sources if present

Type particle transport mode (n, neutron, np, p, photon, or pn)

postprocessor
Kcode problems must be run in mode ‘n’ or ‘np.’

parameter n_energy_max
parameter nemax

Maximum global neutron_energy cutoff for cross sections.

Default 20000000.0

Units eV

Type positive real number

Applicable when mode is n or np

postprocessor
Parameter n_energy_min must be less than n_energy_max.

Applicability mode is n or np

parameter n_energy_min
parameter nemin

Minimum global neutron energy cutoff for cross sections.

Default 1e-05

Units eV

Type positive real number

Applicable when mode is n or np

parameter name
Label for the physics.

Default ce

Type string without special characters

parameter num_xsgrid_points
Number of points used in the xs lookup acceleration grid.

Default 16384

Type positive integer

Applicable when xs_accel is True

89

parameter omit_zaid_n
Set the neutron cross section to zero for these nuclides.

Default 8018

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when mode is n or np

parameter omit_zaid_p
Set the photon cross section to zero for these nuclides.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when mode is p or np

parameter orig_zaid_n
Replace CE data for these nuclides in problem materials.

The ZAID remapping options allow a ZAID (or SCALE ID) present in the problem input to be replaced
with a different ZAID. These options are most useful when entered in column input form:

orig_zaid_n :subs_zaid_n
1001 8001001
11022 11023

This is usually necessary when the selected library is missing cross sections for a nuclide in the model’s
compositions.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when mode is n or np

parameter orig_zaid_p
Replace photon CE data for these nuclides in problem materials.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when mode is p or np

parameter otf_elastic_scattering
Use on-the-fly elastic scattering rather than table lookups.

Default False

Type boolean

Applicable when mode is n or np

parameter p_energy_max
parameter pemax

Maximum global photon energy cutoff for cross sections.

Default 25000000.0

90

Units eV

Type positive real number

Applicable when mode is p or np

postprocessor
Parameter p_energy_min must be less than p_energy_max.

Applicability mode is p or np

parameter p_energy_min
parameter pemin

Minimum global photon energy cutoff for cross sections.

Default 10000.0

Units eV

Type positive real number

Applicable when mode is p or np

parameter probability_tables
parameter ptab

Use the probability table method for the unresolved resonance region (URR).

Default True

Type boolean

Applicable when mode is n or np

parameter reactions(advanced)
Reactions to load (AMPX_MT values).

Default ---

Type list in which each element is a MT number or name (e.g., N_GAMMA, 102)

sublist [SPLICE]
Inject cross sections from a source other than the library. See [PHYSICS][SPLICE] (page 93).

Default (empty sublist)

parameter subs_zaid_n
Substitute ZAID corresponding to ‘orig_zaid_n.’

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when mode is n or np

postprocessor
The parameters orig_zaid_n and subs_zaid_n must have the same length.

Applicability mode is n or np

parameter subs_zaid_p
Substitute ZAID corresponding to ‘orig_zaid_p.’

91

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when mode is p or np

postprocessor
The parameters orig_zaid_p and subs_zaid_p must have the same length.

Applicability mode is p or np

parameter thermal_energy_cutoff
Thermalization energy cutoff for scattering kernels.

Default 10.0

Units eV

Type positive real number

Applicable when mode is n or np

parameter xs_accel
Accelerate cross section calculation.

Accelerate total and fission cross section lookup in a material using a log-spaced energy grid. For
improved performance, this should always be enabled when neutron transport is enabled.

Default True when neutron transport is enabled

Type boolean

Applicable when xs_cache is tot or totfisnu

parameter xs_cache
Preserve cross sections between collisions.

This option enables microscopic cross sections to be cached as a particle streams between materials.
This is primarily a performance optimization (in many problems it should have no effect on the results),
but it subtly changes the physics of streaming through multiple materials when a neutron is in the
unresolved resonance regions of the energy spectrum.

In some codes, streaming from one material to another resets the probability band values. As a
consequence, if a particle streams through two instances of the same material by traveling through a
void, its probability table band will be resampled in the second material.

Unless the xs_cache value is set to none, the physics constructs a hash table of nuclide IDs with
probability table data (and in which the particle’s energy is inside the URR) encountered since the
last collision. When streaming through the same nuclide at different temperatures, the cross section
band [CDF] is preserved, but the cross sections will be updated for the correct temperature. This is
more physical than resetting the band at material boundaries and can affect, for example, keff of highly
voided BWRs.

When xs_cache is set to tot, the total cross sections of all encountered nuclides will be cached. When
the option is set to totfisnu, the total, fission, and nu values are all pre-calculated (when a particle
enters a nuclide) and cached.

Default totfisnu when problem mode is kcode else tot

Type none, ptab, tot, or totfisnu

postprocessor
Cannot set xs_cache to ptab unless probability_tables is True.

92

3.17.3 [PHYSICS][BROADEN]

Temperature-corrected cross section Doppler broadening.

parameter delta_t
Finite difference grid spacing for Leal-Hwang temperature interpolation.

Default 1.0

Units K

Type positive real number

Applicable when not using legacy broadener

parameter energy_tol
Relative difference for considering two energy points equal.

Default 1e-10

Type real number inside (0, 1)

Applicable when not using legacy broadener

parameter kinematics
Interpolate collision data.

Default False

Type boolean

parameter legacy
Use legacy CE Resource interpolation.

Default False

Type boolean

Applicable when CE library is the xml legacy format

parameter temperature_tol
Tolerance for reusing existing broadened cross sections.

Default 4.0

Units K

Type positive real number

parameter union_energy
Unionize lower and upper library temperature energy grids.

Default True

Type boolean

Applicable when not using legacy broadener

3.17.4 [PHYSICS][SPLICE]

Table 18: Available types for the [SPLICE] database

Type Description Applicability

ampx (page 94) Splice multigroup data from an AMPX library

93

3.17.5 [PHYSICS][FISSION]

Fission-kinetics parameters.

command fission_cells
Generate ‘union_fission_cells’ and ‘union_fission_lengths’ from colon-separated unions.

Creates union_fission_cells

Creates union_fission_lengths

parameter fission_gammas
parameter fiss_gam

Generate fission gammas.

Default True if and only if mode is np

Type boolean

Applicable when neutrons and photons are being transported

postprocessor
check fission particle production options.

parameter fission_neutrons
parameter fiss_neut

Generate fission neutrons.

Default True if and only if mode is not kcode

Type boolean

parameter union_fission_cells(advanced)
Flattened list of cells in each union.

Default (empty sublist)

Type list of cell names (each element is a string)

parameter union_fission_lengths(advanced)
Number of cells per union in the above list.

Default (empty sublist)

Type list in which each element is a integer

3.17.6 [PHYSICS][SPLICE=AMPX]

The AMPX data splicing option allows multigroup data from an AMPX library to be spliced into the CE
transport. This feature allows specialized reactions to be calculated during transport (e.g., KERMA tallies).

Currently, only multigroup reaction rates can be inserted. No probability tables or collision data can be
inserted.

If a CE reaction is already present, the AMPX splicer will not override it. To get around this, the user can
manually specify the list of reactions to load in the Continuous-energy physics: [PHYSICS=ce] (page 85)
block, omitting the reactions to be loaded as multigroup data.

command mg_lib
Set mg_lib to the given value using SCALE DATA resolution.

94

Creates xs_library

parameter name
Descriptive name for the data being spliced in.

Type string without special characters

parameter orig_zaid_n
Replace MG data for these nuclides in problem materials.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

parameter orig_zaid_p
Replace photon MG data for these nuclides in problem materials.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

parameter reactions(advanced)
Multigroup reactions to splice into the CE data (AMPX_MT values).

Default (empty sublist)

Type list in which each element is a MT number or name (e.g., N_GAMMA, 102)

parameter subs_zaid_n
Substitute ZAID corresponding to ‘orig_zaid_n.’

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

postprocessor
The parameters orig_zaid_n and subs_zaid_n must have the same length.

parameter subs_zaid_p
Substitute ZAID corresponding to ‘orig_zaid_p.’

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

postprocessor
The parameters orig_zaid_p and subs_zaid_p must have the same length.

parameter xs_library
Path to AMPX library to load data.

Type file path for reading

95

3.18 MULTIGROUP PHYSICS: [PHYSICS=MG]

The SCALE multigroup physics package as implemented in Exnihilo can use various multigroup cross section
library formats, including:

• AMPX-processed cross sections [10],

• User-defined macroscopic cross sections,

• GIP format macroscopic cross sections, and

• ANISN-formatted multigroup libraries [19].

When compositions (as opposed to user-specified multigroup cross sections) are provided, Omnibus uses
SCALE to calculate infinite homogeneous medium cross sections for all materials. No self-shielding is
performed. The default cross section processing is primarily intended for generating deterministic solutions
for hybrid calculations.

Warning: The default multigroup cross sections generated by Omnibus are only recommended for
qualitative transport behavior. Obtaining accurate multigroup cross sections for general problems requires
a great deal of experience using SCALE cross section processing that incorporates self-shielding.

The Monte Carlo implementation of MG physics uses the same methods as KENO multigroup physics.
Depending on the scattering order of the overall problem and of each particular material, the scattering model
takes three forms.

• Isotropic scattering has the standard physical formulation.

• P1 scattering forces the particle to scatter with an exiting cosine equal to the mean cosine. That is,
instead of sampling the exiting cosine from a linear distribution, the cosine is sampled from a delta
function equal to µ0 =

∫︀ 1
−1 µσs(µ) dµ. Thus, in an isotropically scattering medium in a P1 problem,

the particle’s exiting direction will be exactly perpendicular to the particle’s incident direction (since
isotropic scattering has µ0 = 0). This is not physical, but it is the physics behavior in MG KENO.

• Higher order PN scattering selects exiting angles from a quadrature.

3.18.1 FEATURES

• Neutron only, photon only, and coupled neutron-photon problems

3.18.2 LIMITATIONS

• Anisotropic Monte Carlo particle scattering uses the same angular approximations as the multigroup
KENO package in SCALE.

parameter ampx_path
Path to an AMPX working library input file.

This input requires a working library with at least the number of materials present in the model. For a
library with N materials, the cross sections for matids (page 43) [0,N) are assigned based on the ids of
materials in the AMPX file after being sorted in ascending order. For example, if a working library has
materials with IDs [1, 21, 12] (intentionally unsorted); the mapping of material IDs to AMPX library
IDs is

96

0 -> 1
1 -> 12
2 -> 21

There is an additional option implicit_void (page 99) that assigns void cross sections to matid 0. Thus
if the AMPX library has media IDs 1, 3, 5, and if implicit_void is true, then the mapping will be

0 -> 0
1 -> 1
2 -> 3
3 -> 5

Type file path for reading (extension ‘.ampx’)

Applicable when xsgen is ampx

parameter anisn_info_path
Path to an ADVANTG-format ANISN metadata file.

Type file path for reading (extension ‘.info’)

Applicable when xsgen is anisncomp

command anisn_lib
Set ANISN library and metadata paths using a search path.

Creates anisn_path

Creates anisn_zaid_path

Creates anisn_info_path

parameter anisn_path
Path to an ANISN cross section input.

Type file path for reading (extension ‘.bin’)

Applicable when xsgen is anisncomp

parameter anisn_table
ANISN table IDs corresponding to anisn_zaid.

Default ---

Type list in which each element is a positive integer

Applicable when xsgen is anisncomp

postprocessor
The parameters anisn_zaid and anisn_table must have the same length.

Applicability xsgen is anisncomp

parameter anisn_zaid
Replace the given ZAIDs with corresponding ANISN table IDs.

Default ---

97

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when xsgen is anisncomp

parameter anisn_zaid_path
Path to an ADVANTG-format ANISN zaid map.

Type file path for reading (extension ‘.zaid’)

Applicable when xsgen is anisncomp

parameter disable_upscattering
parameter noup

Remove upscattering by altering cross sections.

For shielding calculations, thermal neutrons may contribute little to the detector response. However,
converging the distribution of thermal neutrons through upscatter iterations can be expensive.

This option adjusts all material cross sections so that their scattering matrix is strictly lower triangular.
The default behavior is to lump upscattering cross sections into within-group scattering, adjusting the
outscatter cross sections so that:

σs,g,g ←

g∑︁
g′=1

σs,g,g′

σs,g,g′ ← 0, g′ = [1, . . . , g − 1]

where the outscatter cross section is

σs(Eg → Eg′) ≡ σs,g,g′

Default True if only transporting photons or using hybrid solve

Type boolean

command energy_limits
Expand into parameters n_energy_min and n_energy_max.

Creates n_energy_min

Creates n_energy_max

database [GIP]
GIP input file metadata. See [PHYSICS][GIP] (page 104).

Applicable when xsgen is gip

parameter gip_path
Path to a GIP working library file.

Type file path for reading (extension ‘.gip’)

Applicable when xsgen is gip

parameter implicit_capture
Enable implicit capture for Monte Carlo transport.

Default True

98

Type boolean

Applicable when solver is ‘shift’

parameter implicit_void(advanced)
Insert ‘void’ material of matid=0 before AMPX-specified mats.

Default False

Type boolean

Applicable when xsgen is ampx

parameter mc_pn_scattering(advanced)
Enable high-order scattering for MC transport.

Default True when Shift is enabled

Type boolean

Applicable when PN order is greater than 1

postprocessor
Multigroup Monte Carlo transport requires pn_order to be zero or odd.

Applicability mc_pn_scattering is True

command mg_lib
Set mg_lib to the given value using SCALE DATA resolution.

The aliases for the SCALE multigroup libraries can be found at INSTALL/etc/LibraryAliases.
txt. The SCALE FileNameAliases.txt file is used to resolve the data files. The current options
for multigroup libraries are:

Table 19: Multigroup physics library aliases and filenames in SCALE 6.2.

99

Alias for mg_lib Filename

broad_n xn56v7.1
broad_ng xn28g19v7.1
fine_n xn252v7.1
fine_ng xn200g47v7.1
ultra_fine_n xn999v7.1
v7-238 xn238v7.0
v7-238n xn238v7.0
v7.0-238n xn238v7.0
xn238v7 xn238v7.0
v7-252n xn252v7.1
v7.1-252 xn252v7.1
v7.1-252n xn252v7.1
v7-200n47g xn200g47v7.1
v7.1-200n47g xn200g47v7.1
v7.0-200n47g xn200g47v7.0
v7-27n19g xn27g19v7.0
v7.0-27n19g xn27g19v7.0
v7-28n19g xn28g19v7.1
v7.1-28n19g xn28g19v7.1
v7-56 xn56v7.1
v7-56n xn56v7.1
v7.1-56 xn56v7.1
v7.1-56n xn56v7.1
v7-999 xn999v7.0
v7-999n xn999v7.0
v7.1-999 xn999v7.1
v7.1-999n xn999v7.1
test_n test8g_v7.1
test-8grp test8g_v7.1

Creates xs_library

parameter mode
Particles to transport.

Default Default mode to ‘n’ for kcode, or based on sources if present

Type particle transport mode (n, neutron, np, p, photon, or pn)

postprocessor
Kcode problems must be run in mode ‘n’ or ‘np.’

parameter n_energy_max
parameter nemax

Maximum global neutron_energy cutoff for cross sections.

Default 20000000.0

Units eV

100

Type positive real number

Applicable when mode is n or np

postprocessor
Parameter n_energy_min must be less than n_energy_max.

Applicability mode is n or np

parameter n_energy_min
parameter nemin

Minimum global neutron energy cutoff for cross sections.

Default 1e-05

Units eV

Type positive real number

Applicable when mode is n or np

parameter name
Label for the physics.

Default mg

Type string without special characters

parameter neutron_bounds
parameter nbounds

Neutron group boundaries.

Default ---

Type positive floats in decreasing order (each element is a positive real number)

Applicable when xsgen is ampx, gip, inline, or xml

parameter num_groups(advanced)
Number of energy groups.

Default based on given user input

Type positive integer

postprocessor
Inline and GIP cross section definitions require group boundaries.

Applicability xsgen is gip or inline

parameter omit_zaid
Omit the provided nuclides from the XS processing.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when xsgen is scalecomp or anisncomp

parameter orig_zaid
Replace MG data for these nuclides in problem materials.

101

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when xsgen is scalecomp or anisncomp

parameter p_energy_max
parameter pemax

Maximum global photon energy cutoff for cross sections.

Default 25000000.0

Units eV

Type positive real number

Applicable when mode is p or np

postprocessor
Parameter p_energy_min must be less than p_energy_max.

Applicability mode is p or np

parameter p_energy_min
parameter pemin

Minimum global photon energy cutoff for cross sections.

Default 10000.0

Units eV

Type positive real number

Applicable when mode is p or np

parameter photon_bounds
parameter pbounds

Photon group boundaries.

Default ---

Type positive floats in decreasing order (each element is a positive real number)

Applicable when xsgen is ampx, gip, inline, or xml

parameter pn_order
Scattering order of problem.

Type non-negative integer

parameter processing
Type of cross section processing to apply.

Default fulcrum

Type fulcrum or none

Applicable when xsgen is scalecomp

parameter subs_zaid
Substitute ZAID corresponding to ‘orig_zaid.’

102

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when xsgen is scalecomp or anisncomp

postprocessor
The parameters orig_zaid and subs_zaid must have the same length.

Applicability xsgen is scalecomp or anisncomp

parameter subtract_upscattering
parameter subup

Remove upscattering by subtracting from the total cross section.

Instead of lumping upscatter cross sections into the self-scattering cross section, delete the upscatter
cross sections and reduce the total cross section accordingly.

σt,g ← σt,g −

g−1∑︁
g′=1

σs,g,g′

σs,g,g′ ← 0, g′ = [1, . . . , g − 1]

where the outscatter cross section is

σs(Eg → Eg′) ≡ σs,g,g′

Default False

Type boolean

Applicable when disable_upscattering is True

parameter transport_correction
Modify the anisotropy of the scattering cross sections to help preserve solution positivity.

Default none

Type diagonal, cesaro, or none

postprocessor
The cesaro transport correction requires pn_order >= 2.

Applicability transport_correction is cesaro

parameter xml_path
Path to an XML cross section input file.

Type file path for reading (extension ‘.xml’)

Applicable when xsgen is xml

sublist [XS]
Manual isotropic cross section input. See [PHYSICS][XS] (page 105).

Applicable when xsgen is inline

parameter xs_library
SCALE multigroup library name or master library path.

103

Type file path for reading

Applicable when xsgen is scalecomp

parameter xsgen(advanced)
Type of cross section data input.

The xsgen parameter specifies in what format the cross sections are defined for multigroup physics. It
is defined automatically by the front end (based on what input the user provides) and should not ever
have to be set manually.

Table 20: Possible cross section input formats.

Option Description

inline The [XS] (page 105) subdatabase is used to define cross
sections for every material.

ampx The cross sections for every material are defined in AMPX
format. This file is specified using the ampx_path parame-
ter.

gip The cross sections for every material are defined in GIP
format. This file is specified using the gip_path parameter.
Other required parameters describing the file must be in the
[GIP] sub-database.

scalecomp SCALE multigroup cross sections will be built from compo-
sition information pulled from the model.

anisncomp Mixed cross sections will be calculated from
ANISN/ADVANTG multigroup libraries using com-
positions pulled from the model.

xml The cross sections for every material are defined in a separate
XML file format. This file is specified using the xml_path
parameter.

Default based on the user-given input types

Type scalecomp, anisncomp, ampx, gip, inline, or xml

3.18.3 [PHYSICS][GIP]

The GIP file format is supported only for legacy applications. It is essentially a Fortran data dump. Each
group of data is written as a single Fortran record comprised of a (num_reactions, num_moments,
num_materials) array. The number of reactions here is equal to ihm plus an extra value if upscattering is
present.

parameter ihm
Cross section table length in GIP file.

Type non-negative integer

parameter ihs
Position of within-group scattering in GIP file.

Type non-negative integer

104

parameter iht
Postition of total cross section in GIP file.

Type non-negative integer

parameter isct
PN scattering order in GIP file.

Type non-negative integer

parameter iups
Number of thermal (upscatter) groups in GIP file.

Type non-negative integer

parameter nmat
Number of materials in GIP file.

Type non-negative integer

parameter strict
Whether edit cross sections correspond to the GIP standard.

With the strict option, the “edit” reactions on the GIP file are assumed to have the following
interpretation:

Table 21: GIP reaction tables.

Table Reaction

iht - 4 χ

iht - 3 Σf
iht - 2 Σa
iht - 1 νΣf

Default False

Type boolean

3.18.4 [PHYSICS][XS]

This sub-database specifies all cross sections for a single material. If the material is fissionable, all of
fission, nu, and chi must be present. If it is not fissionable, then none of them can be present.

parameter chi
Fission spectrum.

Default ---

Type list of non-negative floats (each element is a non-negative real number)

postprocessor
The parameters total, fission, nu, and chi must have the same length. Empty lists are ignored.

parameter fission
Fission cross section.

Default ---

105

Type list of non-negative floats (each element is a non-negative real number)

parameter matid
Material ID.

Type non-negative integer

parameter name
Label for the material.

Default given matid

Type string without special characters

parameter nu
Neutron production.

Default ---

Type list of non-negative floats (each element is a non-negative real number)

parameter s0
Isotropic scattering cross section.

Type list of non-negative floats (each element is a non-negative real number)

parameter total
Total cross section by group.

Type list of non-negative floats (each element is a non-negative real number)

3.19 COMPOSITIONS: [COMP]

The [COMP] block controls output and management of compositions and enables defining them manually.
The matids in each block must correspond to the matids in the problem geometry.

command autocolor
Attempt to provide color values using their compositions.

Creates color_key

Creates color_val

Applicable when

• ‘ENABLE_PYTHON_WRAPPERS’ is enabled in this CMake build; and

• The ‘matplotlib’ python package is installed

parameter color_key(advanced)
Name of compositions for which colors are being set.

Default ---

Type list in which each element is a string

parameter color_val(advanced)
Compositions color to be set.

Default ---

106

Type list in which each element is a X11 color, HTML color like #FF00ee, tuple, or empty

postprocessor
The parameters color_key and color_val must have the same length.

command colors
Map ‘color_key’ to ‘color_val’ from pairs or arrow-separated items.

VisIT supports custom colors to be associated with each material in its plotting routines. Materials not
specified in this list will be filled with grey. Incorrect material names will generate an error:

colors
m1 "light blue"
"void" "dark grey"
m13 "#aaeeff"
m14 "DarkSlateGray"
m105 "#5555FF"
m106 "pale goldenrod"

Valid color names are either HTML-style hexadecimal RGB tuples or X11 colors.

For complicated inputs with variable materials, the Python raytracer and coloring modules can be
used to automatically assign colors based on materials compositions. (See the omnibus.raytracer.
colors module.)

Creates color_key

Creates color_val

parameter compgen(advanced)
Type of composition input.

Default based on the user-given comp types

Type model, hdf5, or inline

sublist [COMPOUND]
Elemental compound definition. See [COMP][COMPOUND] (page 110).

Default (empty sublist)

command elements
Create compounds from natural abundances of the given elements.

Creates compound

deprecated force_scl
Deprecated entry force_scl has been renamed to load_scl.

Update to load_scl

parameter input
Path to the HDF5 file containing compositions.

Type file path for reading (extension ‘.h5’)

Applicable when compgen is hdf5

107

parameter load_scl
Load nuclides from the SCALE Standard Composition Library.

The SCALE standard composition library (SCL) provides a database of nuclides, elements, and
compounds that can be used to simplify user composition input.

Exnihilo uses a global database of nuclide data (number densities, names, atomic numbers, etc.) for
construction of compositions. This same database is also used to drive SCALE’s multigroup cross
section builder Fulcrum. If using the SCALE cross section builder (xsgen processed), the names in
the database must correspond to the names SCALE expects.

Some model types (Geant4, Lava) are able to load nuclide metadata independently of the SCALE SCL;
this can interfere with cross section generation. The load_scl option preferentially loads SCALE’s
nuclide definitions.

This option is also useful if using a composition source (hdf5 or inline) that has incomplete nuclide
data but is being used for depletion. For example, since only nuclides in use by the current composition
set are written to the composition output, it may not be sufficient to use those compositions/nuclides in
a depletion run (since additional depletion nuclides will be added to the composition and their nuclide
data may be missing).

Note that changing the nuclide data source will change the relationship between composition number
densities and weight fractions, so output values may change.

Default True when using ‘processed’ MG physics, CE physics, or HDF5/inline materials

Type boolean

Applicable when ‘SCALE_StdCompLib’ is enabled in this build

sublist [MATERIAL]
Composition definition. See [COMP][MATERIAL] (page 109).

Applicable when compgen is inline

database [NUCLIDES]
Nuclide definitions. See [COMP][NUCLIDES] (page 110).

Optional

parameter output
Save compositions to the output file.

Default True

Type boolean

parameter sclib_path
Path to the SCALE standard composition library.

Default '/.../scale.rev40.sclib'

Type file path for reading (extension ‘.sclib’)

Applicable when load_scl is True

108

3.19.1 [COMP][MATERIAL]

The material block is for defining an individual composition. Providing any materials will override all
compositions that may be present in the model (page 43).

parameter deplete
parameter depl

Flag the material as depletable.

Marking a material as “depletable” tells Shift to enable ORIGEN depletion for this material unless the
user overrides this using the options in the [DEPLETION] database.

The default value of “auto” will set this property to true if and only if it is marked as fissionable.

Default auto

Type auto, true, or false

parameter fission
parameter fiss

Flag the material as fissionable.

Marking a material as “fissionable” sets whether (by default) fission gammas and neutrons will be
produced during fixed-source transport. In other words, setting this value to false will (again, by
default) suppress secondary neutrons or gamma yields from the material.

Note that this option is ignored for fission site sampling in kcode/eigenvalue mode: all fissionable
nuclides have a chance to create fission sites.

The default value of “auto” will set this property to true if any fissionable nuclide is present, and false
if not.

Default auto

Type auto, true, or false

parameter matid
Internal matid number.

The matid is a [0,N)-indexed internal numbering system. The matids used by Shift typically differ
from the material names used in the problem physics input (for example, m10 in an MCNP input
deck might correspond to matid=1). Currently, the only way to guarantee that this corresponds to a
particular material in the geometry input is to use an input that specifies matids explicitly (RTK or
mesh geometry). However, by viewing the matid-to-label mapping given in an Omnibus post-process
output for a SCALE or MCNP input geometry, it is possible to determine what matid corresponds to
what material in a particular problem input.

Type non-negative integer

parameter name
Label for the material.

Type non-empty string

parameter nd
Number densities of each nuclide.

Units atom
(b·cm)

109

Type list in which each element is a positive real number

postprocessor
The parameters nd and zaid must have the same length.

parameter temperature
parameter tmp

Material temperature.

Units K

Type non-negative real number

parameter zaid
Element/nuclide IDs (MZZZAAA) in this material.

Type list in which each element is a positive integer

3.19.2 [COMP][NUCLIDES]

Define properties for a given nuclide ID. This enables custom ZAID values in input files such as multigroup
cross section data. These properties will override any existing masses loaded from the SCALE SCL.

parameter mass
Atomic masses of nuclides.

Type list in which each element is a positive real number

postprocessor
The parameters name, zaid, and mass must have the same length.

parameter name
Names of nuclides.

Type list in which each element is a string

parameter zaid
Nuclide IDs (MZZZAAA).

Type list in which each element is a positive integer

3.19.3 [COMP][COMPOUND]

Define compounds or natural-abundance elements. Any ZAID in the user model or composition definitions
corresponding to the value of czaid will be expanded into the zaid values provided for this compound.
These will override any compound defined by the SCALE SCL.

parameter czaid
Compound ZAID (e.g., 1000 for elemental hydrogen).

Type positive integer

parameter name
Descriptive name of the compound.

Type string without special characters

parameter wtfrac
Weight fraction of each constituent.

110

Type list in which each element is a positive real number

postprocessor
The parameters wtfrac and zaid must have the same length.

parameter zaid
Consitutent nuclide IDs (MZZZAAA).

Type list in which each element is a positive integer

3.20 RESPONSES: [RESPONSE]
The RESPONSE block is for defining energy- and particle-dependent responses such as dose conversion
factors. Each response can be used multiple times in the tallies.

Table 22: Available types for the [RESPONSE] database

Type Description Applicability

histogram (page 111) Histogram response
interpolated (page 112) Interpolation between values
xs (page 112) Microscopic cross section multiplier

3.20.1 [RESPONSE=HISTOGRAM]
The “histogram” response is effectively a piecewise constant cross section. The response is the specified
value of the response (page 111) parameter inside the corresponding energy (page 111) bin for the given
particle type (page 111). The response is zero for other particle types or outside the given energy range.

parameter description
Optional longer descriptive string.

Default ''
Type string

parameter energy
parameter e

Lowest bound plus upper bounds for the histograms.

Units eV

Type monotonically increasing list (each element is a real number)

parameter name
Short title or label for response.

Type string without special characters

parameter particle_type
parameter pt

Particle type to apply this response.

Type particle type (n, neutron, p, or photon)

parameter response
parameter r

Histogram response values.

Type list in which each element is a real number

postprocessor
Size of energy bounds must be one greater than the number of response values.

111

3.20.2 [RESPONSE=INTERPOLATED]

Interpolation between values.

parameter description
Optional longer descriptive string.

Default ''

Type string

parameter energy
parameter e

Energy points.

Units eV

Type monotonically increasing list (each element is a positive real number)

parameter interpolation_type
parameter interp

Type of interpolated response.

Type linear, log_lin, lin_log, or log_log

parameter name
Short title or label for response.

Type string without special characters

parameter particle_type
parameter pt

Particle type to apply this response.

Type particle type (n, neutron, p, or photon)

parameter response
parameter r

Response values at energy points.

Type list in which each element is a real number

postprocessor
Response must be positive for log_log or log_lin.

postprocessor
The parameters energy and response must have the same length.

3.20.3 [RESPONSE=XS]

Microscopic cross section multiplier.

parameter density
Density multiplier for response calculation.

Default 1.0

Type positive real number

112

parameter description
Optional longer descriptive string.

Default ''

Type string

parameter mt
Reaction to tally.

Type MT number or name (e.g., N_GAMMA, 102)

parameter name
Short title or label for response.

Type string without special characters

parameter nuclide
Nuclide ID for the cross section.

Type nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

parameter particle_type
parameter pt

Particle type to apply this response.

Type particle type (n, neutron, p, or photon)

parameter physics(advanced)
Name of the physics DB to use for the source data.

Default the name of the CE physics database

Type string without special characters

parameter temperature
parameter tmp

Temperature of nuclide.

Type positive real number

Applicable when particle_type is n

3.21 TALLIES: [TALLY]

Be aware that unless otherwise specified, tallies in Shift:

• are replicated, even if domain decomposition is requested;

• use history-based statistics to estimate variance;

• provide volume-averaged reaction rates if the tally region’s volume is known;

• are path length estimators.

113

Many tallies support a common set of attributes, including a name and optional description, a list of reactions
to tally, a list of [RESPONSE] (page 111) objects, and neutron and photon energy bin boundaries.

Note: Unlike other Monte Carlo transport codes, the bin boundaries in Omnibus are truly boundaries, not
upper or lower energies. Therefore, the number of energy bins will be one less than the number of bounds.
To reproduce the behavior of MCNP and Monaco, which tally from the cutoff energy to the lowest given
energy, the user must explicitly add the cutoff energy as the lowest energy bound.

The cell and mesh tallies produce volume averaged quantities when volumes are available for the region
being tallied. Therefore, a reaction rate is output as a reaction rate density (units of reaction

s−cm3). If volumes are
not provided (explicitly by the user or automatically by the geometry) for cell tallies, a warning will be issued
and the tally result will be cell-integrated.

Warning: Many geometries define the volume of a cell to be the volume for an instance of that cell.
If the cell is replicated (e.g., a pin cell in an assembly), then the volume being used to normalize the
tally might not correspond to the total volume being tallied. This is because all instances of a cell will
contribute to the same tally.

Because of the potential ambiguities that may occur with volume normalization, it is highly recommended
that users check the volumes field output alongside cell tallies. A volume entry of 0 means that the volume
was not provided, so that the corresponding tally will have units of reaction

s as though the tally region had unit
volume.

sublist [BATCH_MESH](advanced)
Tally reaction rates using batch statistics (experimental!). See [TALLY][BATCH_MESH] (page 160).

Applicable when problem mode is kcode

Optional

sublist [BIRTH_SPECTRUM]
Tally the energy distribution of particles at birth in geometry cells. See [TALLY][BIRTH_SPECTRUM]
(page 158).

Optional

Applicable when solver is ‘shift’

sublist [CELL]
Tally reaction rates in geometry cells and unions of cells. See [TALLY][CELL] (page 130).

Optional

sublist [CYLMESH]
Tally reaction rates in cylindrical cells. See [TALLY][CYLMESH] (page 123).

Optional

sublist [DIAGNOSTIC]
Singleton tallies used for transport diagnostic purposes. See [TALLY][DIAGNOSTIC] (page 140).

Applicable when solver is ‘shift’

114

Default (empty sublist)

sublist [HEXMESH]
Tally reaction rates on a hexagonal grid. See [TALLY][HEXMESH] (page 127).

Optional

sublist [HEXNODAL]
Tally integral quantities on a hexagonal mesh for nodal calculations. See [TALLY][HEXNODAL]
(page 150).

Applicable when solver is ‘shift’

Optional

sublist [MEAN_SCATTER_ANGLE]
Tally the mean scattering angle in geometry cells. See [TALLY][MEAN_SCATTER_ANGLE]
(page 156).

Optional

Applicable when solver is ‘shift’

sublist [MESH]
Tally reaction rates on a domain-decomposed Cartesian mesh. See [TALLY][MESH] (page 116).

Optional

sublist [MESH_SURFACE]
Tally reaction rates and partial currents on mesh faces. See [TALLY][MESH_SURFACE] (page 121).

Optional

sublist [MICRO]
Tally flux and microscopic cross sections in materials. See [TALLY][MICRO] (page 138).

Applicable when

• solver is ‘shift’; and

• physics is CE

Optional

sublist [MIGRATION_AREA]
Tally particle migration area on a Cartesian mesh. See [TALLY][MIGRATION_AREA] (page 154).

Applicable when solver is ‘shift’

Optional

sublist [NODAL]
Tally integral quantities on a Cartesian mesh for nodal calculations. See [TALLY][NODAL] (page 146).

Applicable when solver is ‘shift’

Optional

sublist [SCATTERING_PROB_MATRIX]
Tally the group-to-group scattering probability matrix in geometry cells. See
[TALLY][SCATTERING_PROB_MATRIX] (page 157).

115

Optional

Applicable when solver is ‘shift’

database [SENSITIVITY]
Tally sensitivities for use in uncertainty quantification. See [TALLY][SENSITIVITY] (page 144).

Optional

Applicable when

• physics is CE; and

• ‘Sensitivity’ is enabled in this build

sublist [SHADOW]
Tally arbitrary cells in an overlaid but non-interacting geometry. See [TALLY][SHADOW] (page 135).

Applicable when ‘GG’ is enabled in this build

Optional

sublist [SURFACE_CENSUS]
Tally individual particle properties as they cross a geometry surface. See
[TALLY][SURFACE_CENSUS] (page 159).

Applicable when solver is ‘shift’

Optional

database [SWORD]
Include tally definitions from SWORD input. See [TALLY][SWORD] (page 141).

Optional

Applicable when model is ‘sword’

sublist [VERA]
Tally in cells in a VERA model. See [TALLY][VERA] (page 134).

Optional

3.21.1 [TALLY][MESH]

Shift supports multiple structured Cartesian path length mesh tallies. The mesh can be defined over all or part
of the physical problem geometry. If domain decomposition is enabled in Shift, only the part of the mesh
tally that is present on a spatial domain will be transported on.

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter delta_x
Length of mesh tally cell on the X axis.

Units cm

116

Type positive real number

Applicable when type is global

parameter delta_y
Length of mesh tally cell on the Y axis.

Units cm

Type positive real number

Applicable when type is global

parameter delta_z
Length of mesh tally cell on the Z axis.

Units cm

Type positive real number

Applicable when type is global

command deltas
Expand into parameters delta_x, delta_y, and delta_z.

Creates delta_x

Creates delta_y

Creates delta_z

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

database [FILTERS]
Tally filtering options. See [TALLY][MESH][FILTERS] (page 161).

Optional

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

117

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

118

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

119

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter responses
parameter resp

Responses for this tally.

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

parameter type
Type of mesh tally.

Default grid

Type grid or global

parameter x
Tally grid coordinates along the X axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

parameter y
Tally grid coordinates along the Y axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

parameter z
Tally grid coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

120

3.21.2 [TALLY][MESH_SURFACE]

The Cartesian mesh surface tally can calculate surface flux, current, or partial current on each face of the
mesh. The allowed reactions for this tally differ from the volumetric mesh tally (page 116) reactions.

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when solver is ‘shift’

parameter delta_x
Length of mesh current tally cell on the X axis.

Units cm

Type positive real number

Applicable when type is global

parameter delta_y
Length of mesh current tally cell on the Y axis.

Units cm

Type positive real number

Applicable when type is global

parameter delta_z
Length of mesh current tally cell on the Z axis.

Units cm

Type positive real number

Applicable when type is global

command deltas
Expand into parameters delta_x, delta_y, and delta_z.

Creates delta_x

Creates delta_y

Creates delta_z

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

database [FILTERS]
Tally filtering options. See [TALLY][MESH][FILTERS] (page 161).

Optional

121

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter reactions
parameter rxn

Type of mesh surface tally.

Default flux

Type list in which each element is a flux, current, partial_current_negative, or
partial_current_positive

parameter type
Type of mesh surface tally.

Default grid

Type grid or global

parameter x
Mesh current tally coordinates along the X axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

parameter y
Mesh current tally coordinates along the Y axis.

Units cm

122

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

parameter z
Mesh current tally coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

3.21.3 [TALLY][CYLMESH]

Particles can be tracked on a translated, rotated cylinder broken into (r, z, θ) mesh cells.

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

123

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

124

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter r
Radial mesh coordinates.

Units cm

Type monotonically increasing list with at least two values, starting with zero (each element
is a real number)

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux

125

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter responses
parameter resp

Responses for this tally.

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

parameter rotate
parameter rot

Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

parameter theta
Theta mesh coordinates.

Default 0.0 1.0

Units revolution

Type monotonically increasing list with at least two values, starting with zero and ending
with one [revolution] (each element is a real number)

parameter translate
parameter trans

Translation vector (applied after rotation).

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter z
Mesh coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

126

3.21.4 [TALLY][HEXMESH]

Tally volumetric path lengths on a hexagonal (triangular-pitch) mesh. This tally is meant for nodal data
calculations and should generally not be used. The mesh boundaries must encompass the entirety of the
transportable problem domain.

parameter apothem
Distance from hex center to face center.

Units cm

Type positive real number

parameter center_hex
(x,y) centroid of center hex.

Units cm

Type length-2 float vector (each element is a real number)

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

database [FILTERS]
Tally filtering options. See [TALLY][MESH][FILTERS] (page 161).

Optional

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

127

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

128

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter num_rings
Number of rings around the central hex.

Type non-negative integer

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

129

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter responses
parameter resp

Responses for this tally.

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

parameter z
Mesh coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

3.21.5 [TALLY][CELL]

Geometry cells and unions of cells are tallied using a hash table, allowing constant-time scaling with respect
to the number of total cells being tallied.

The recommended way to tally multiple particle spectra in the same cell is to use a single tally.

[TALLY][CELL energybinned]
description "5n3g energy-binned tally."
reactions flux
cells 1 100 4:5:6
neutron_bins 1e7 1e6 1e3 10 1 1e-3
photon_bins 2e7 1e6 1e5 1e3

command cells
Generate ‘union_cells’ and ‘union_lengths’ from colon-separated unions.

Creates union_cells

Creates union_lengths

parameter cycles
The kcode problem phase in which this tally is active.

130

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

database [FILTERS]
Tally filtering options. See [TALLY][MESH][FILTERS] (page 161).

Optional

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

131

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

The micro_zaid and micro_mt parameters are used to tally microscopic reaction rates for nuclides
in the material being tallied. That is, if the user requests reaction rates for tungsten absorption in a
cell that has pure water, the tally result for that cell will be zero. This allows the user (for example) to
input trace nuclides in depletion calculations and only have nonzero reaction rates when the transport
nuclide density is nonzero.

Example:

132

micro_zaid :micro_mt
1001 N_TOTAL
8016 N_TOTAL
8016 N_ELASTIC
8016 N_INELASTIC

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter reactions
parameter rxn

Reactions to calculate for this tally. See reactions (page 119) in [TALLY][MESH].

parameter responses
parameter resp

Responses for this tally.

133

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

parameter union_cells(advanced)
Flattened list of cells in each union.

Type list of cell names (each element is a string)

parameter union_lengths(advanced)
Number of cells per union in the above list.

Type list in which each element is a integer

3.21.6 [TALLY][VERA]

If using a VERA model input, this will create a cell tally for the outermost cell of the vessel, which can then
be optimized for when running in hybrid mode.

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the tally.

Type string without special characters

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

134

3.21.7 [TALLY][SHADOW]

“Shadow” path length tallies track through a secondary geometry during normal transport. Particles do not
interact with this “shadow geometry,” but they are tallied spatially over the cells in the shadow geometry.
The shadow geometry is defined by an external Geometria/GG input file, distinct from the primary tracking
geometry.

During transport, a fast test is performed at the beginning of every particle track to determine whether the
track intersects with the bounding box of the geometry. If so, the particle’s location inside the shadow
geometry is determined, distances to boundaries are calculated, and the particle’s track is tallied on top of the
shadow geometry cells.

Every cell in the shadow geometry is tallied; however, due to the underlying geometry implementation, some
cells will never receive a score. For example, a “cell” representing the outside of the universe is always
created, but since the tally is not accumulated if the particle is outside the shadow geometry, that cell is never
scored.

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

command input
Generate a Geometria XML representation from an .gg.omn input.

Creates xml_path

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

135

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

136

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

137

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter responses
parameter resp

Responses for this tally.

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

parameter xml_path(advanced)
Path to the Geometria XML input file.

Type file path for reading (extension ‘.xml’)

3.21.8 [TALLY][MICRO]

The “micro” tally is primarily used for depletion coupling. It calculates material-averaged, flux-weighted
cross sections for multiple materials, nuclides, and reactions. The user specifies a list of materials to tally, as
well as a list of nuclide/reaction pairs. During the tally setup phase in Shift, a list is constructed of all the
possible nuclide/reaction pairs in each mix table, and nuclides or reactions that are absent in each mixture are
elided.

Note that the volumes of all cells that contain the given materials must be specified. If any of these are absent,
an error will be issued that enumerates the needed cells with missing volumes.

If no particles are sampled in one of the requested materials, the flux is zero and the microscopic cross section
will be set to the sentinel flag of -1.

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter materials
parameter mats

Materials in which to tally.

Type list in which each element is a non-empty string

postprocessor
At least one micro_mt_zaid:micro_mt pair must be set.

138

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter name
Short title or label for the tally.

Type string without special characters

139

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

3.21.9 [TALLY][DIAGNOSTIC]

Table 23: Available types for the [DIAGNOSTIC] database

Type Description Applicability

pathlength (page 162) Measure distributions of step lengths traveled in the
transporter

collision (page 162) Measure the materials and nuclides in which collisions
occur

physics is CE

source (page 162) Measure the particle source distribution
history (page 163) Write out all events that occur for a history or series

of histories
debug_history
(page 163)

Write events for failed particle histories

debug (page 163) Track common transport statistics
history_time
(page 163)

Write transport time for each particle history

fiss_site (page 163) Write cycle-to-cycle fission event locations problem mode is
kcode

split (page 163) Write particle variance reduction splitting locations problem mode is
hybrid

roulette (page 163) Write particle variance reduction rouletting locations problem mode is
hybrid

140

3.21.10 [TALLY][SWORD]

When using a SWORD model input, this will import SWORD tally cells into the problem.

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

141

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

142

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter responses
parameter resp

Responses for this tally.

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

143

3.21.11 [TALLY][SENSITIVITY]

The sensitivity tally calculates eigenvalue sensitivities to cross sections and to ratios of cross sections.

parameter binned
Store fully binned tallies.

Default False

Type boolean

parameter constrained_chi
Calculate constrained chi values.

Default True

Type boolean

parameter covariance
Use the covariance between tallies and the normalization factor when calculating final sensitivity
variance.

Default True

Type boolean

parameter cycles_per_batch
Number of kcode cycles in a statistical batch.

Default 1

Type positive integer

parameter eint
Store energy-integrated tallies.

Default False

Type boolean

parameter latent_generations
parameter cfp

Number of latent generations.

Default 5

Type positive integer

Applicable when method is ifp or gpt

parameter materials
parameter mats

Materials in which to tally sensitivities.

A single asterisk (as a wild card) will cause sensitivities for all materials to be tallied:

materials *

Default '*'

144

Type list in which each element is a non-empty string

parameter meint
Store energy- and material-integrated tallies.

Default True

Type boolean

parameter method
parameter cet

Sensitivity coefficient calculation mode.

Default clutch

Type clutch, ifp, or gpt

parameter mint
Store material-integrated tallies.

Default True

Type boolean

parameter mts
parameter mt

MT reactions to tally.

Default -1

Type list in which each element is a MT name or ZAID, or ‘*’ for default reactions

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter nuclides
parameter nucl

Nuclide IDs for microscopic cross section tallying.

A single asterisk (as a wild card) will cause sensitivities for all nuclides to be tallied:

nuclides *

Default -1

Type list in which each element is a Nuclide name or ZAID, or ‘*’ for all nuclides

sublist [RATIO]
Define a ratio of two responses to calculate. See [TALLY][SENSITIVITY][RATIO] (page 165).

Applicable when method is gpt

sublist [RESPONSE]
Define a sensitivity response. See [TALLY][SENSITIVITY][RESPONSE] (page 164).

Applicable when method is gpt

145

3.21.12 [TALLY][NODAL]

Tally integral quantities on a Cartesian mesh for nodal calculations.

parameter birth_spectrum
Tally birth spectrum of particles.

Type boolean

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter delta_x
Length of mesh tally cell on the X axis.

Units cm

Type positive real number

Applicable when type is global

parameter delta_y
Length of mesh tally cell on the Y axis.

Units cm

Type positive real number

Applicable when type is global

parameter delta_z
Length of mesh tally cell on the Z axis.

Units cm

Type positive real number

Applicable when type is global

command deltas
Expand into parameters delta_x, delta_y, and delta_z.

Creates delta_x

Creates delta_y

Creates delta_z

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

146

parameter diffusion_coefficients
Tally diffusion coefficients.

Type boolean

parameter eddington_factors
Tally the eddington factors.

Type boolean

database [FILTERS]
Tally filtering options. See [TALLY][MESH][FILTERS] (page 161).

Optional

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter mean_transfer_angle
Tally mean transfer angle.

Type boolean

147

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

148

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter responses
parameter resp

Responses for this tally.

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

149

parameter transfer_matrices
Tally the P0 and P1 transfer matrices.

Type boolean

parameter type
Type of mesh tally.

Default grid

Type grid or global

parameter x
Tally grid coordinates along the X axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

parameter y
Tally grid coordinates along the Y axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

parameter z
Tally grid coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

3.21.13 [TALLY][HEXNODAL]

Tally integral quantities on a hexagonal mesh for nodal calculations.

parameter apothem
Distance from hex center to face center.

Units cm

Type positive real number

parameter birth_spectrum
Tally birth spectrum of particles.

Type boolean

parameter center_hex
(x,y) centroid of center hex.

Units cm

Type length-2 float vector (each element is a real number)

150

parameter cycles
The kcode problem phase in which this tally is active.

Default active

Type active or inactive

Applicable when problem mode is kcode

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter diffusion_coefficients
Tally diffusion coefficients.

Type boolean

parameter eddington_factors
Tally the eddington factors.

Type boolean

database [FILTERS]
Tally filtering options. See [TALLY][MESH][FILTERS] (page 161).

Optional

parameter macro_mt
ENDF reactions for partial macroscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter macro_mt_zaid
Nuclide IDs for partial macroscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter macro_rxn
Special reactions for macroscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

151

Applicable when physics is CE

parameter macro_rxn_zaid
Nuclide IDs for macroscopic ‘special reaction’ cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter mean_transfer_angle
Tally mean transfer angle.

Type boolean

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

Applicability physics is CE

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

parameter micro_rxn
Special reactions for microscopic cross section tallying.

Default ---

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

Applicable when physics is CE

postprocessor
The parameters micro_rxn_zaid and micro_rxn must have the same length.

Applicability physics is CE

parameter micro_rxn_zaid
Nuclide IDs for microscopic ‘special reaction’ cross section tallying.

152

Default ---

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

Applicable when physics is CE

deprecated micro_zaid
Deprecated entry micro_zaid has been renamed to micro_mt_zaid.

Update to micro_mt_zaid

parameter mt
Additional macroscopic reaction rates to tally.

Default ---

Type list of MT numbers or names (each element is a MT number or name (e.g.,
N_GAMMA, 102))

Applicable when physics is CE

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter num_rings
Number of rings around the central hex.

Type non-negative integer

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter reactions
parameter rxn

Reactions to calculate for this tally.

153

Default flux

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter responses
parameter resp

Responses for this tally.

Default ---

Type list in which each element is a string

postprocessor
Validate response names against [RESPONSE] blocks.

parameter transfer_matrices
Tally the P0 and P1 transfer matrices.

Type boolean

parameter z
Mesh coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

3.21.14 [TALLY][MIGRATION_AREA]

Tally particle migration area on a Cartesian mesh.

parameter delta_x
Length of mesh tally cell on the X axis.

Units cm

Type positive real number

Applicable when type is global

parameter delta_y
Length of mesh tally cell on the Y axis.

Units cm

Type positive real number

Applicable when type is global

parameter delta_z
Length of mesh tally cell on the Z axis.

Units cm

Type positive real number

154

Applicable when type is global

command deltas
Expand into parameters delta_x, delta_y, and delta_z.

Creates delta_x

Creates delta_y

Creates delta_z

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

database [FILTERS]
Tally filtering options. See [TALLY][MESH][FILTERS] (page 161).

Optional

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter type
Type of mesh tally.

Default grid

Type grid or global

parameter x
Tally grid coordinates along the X axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

parameter y
Tally grid coordinates along the Y axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

155

Applicable when type is grid

parameter z
Tally grid coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when type is grid

3.21.15 [TALLY][MEAN_SCATTER_ANGLE]

Tally the mean scattering angle in geometry cells.

command cells
Generate ‘union_cells’ and ‘union_lengths’ from colon-separated unions.

Creates union_cells

Creates union_lengths

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

156

postprocessor
The parameters ``neutron_bins and photon_bins`` must not all be empty.

parameter union_cells(advanced)
Flattened list of cells in each union.

Type list of cell names (each element is a string)

parameter union_lengths(advanced)
Number of cells per union in the above list.

Type list in which each element is a integer

3.21.16 [TALLY][SCATTERING_PROB_MATRIX]

Tally the group-to-group scattering probability matrix in geometry cells.

command cells
Generate ‘union_cells’ and ‘union_lengths’ from colon-separated unions.

Creates union_cells

Creates union_lengths

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins
parameter pbins

Energy bin boundaries for photons.

Default ---

157

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

postprocessor
The parameters ``neutron_bins and photon_bins`` must not all be empty.

parameter union_cells(advanced)
Flattened list of cells in each union.

Type list of cell names (each element is a string)

parameter union_lengths(advanced)
Number of cells per union in the above list.

Type list in which each element is a integer

3.21.17 [TALLY][BIRTH_SPECTRUM]

Tally the energy distribution of particles at birth in geometry cells.

command cells
Generate ‘union_cells’ and ‘union_lengths’ from colon-separated unions.

Creates union_cells

Creates union_lengths

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the tally.

Type string without special characters

parameter neutron_bins
parameter nbins

Energy bin boundaries for neutrons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

parameter photon_bins

158

parameter pbins
Energy bin boundaries for photons.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

postprocessor
The parameters ``neutron_bins and photon_bins`` must not all be empty.

parameter union_cells(advanced)
Flattened list of cells in each union.

Type list of cell names (each element is a string)

parameter union_lengths(advanced)
Number of cells per union in the above list.

Type list in which each element is a integer

3.21.18 [TALLY][SURFACE_CENSUS]

The surface census tally records a particle’s state (position, direction, type, energy) when crossing from the
exiting cell to the target cell. The resulting data can be used for using a Shift calculation to generate a starting
source for another transport code such as Geant4.

command cells
Map ‘exiting_cells’ to ‘target_cells’ from pairs or arrow-separated items.

Creates exiting_cells

Creates target_cells

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

command exiting_cells
Generate ‘union_exiting_cells’ and ‘union_exiting_lengths’ from colon-separated unions.

Creates union_exiting_cells

Creates union_exiting_lengths

parameter kill_particle
Kill particle when tallied.

Default True

Type boolean

parameter name
Short title or label for the tally.

159

Type string without special characters

database [TAGS]
Particle tagging options. See [TALLY][SURFACE_CENSUS][TAGS] (page 165).

Optional

command target_cells
Generate ‘union_target_cells’ and ‘union_target_lengths’ from colon-separated unions.

Creates union_target_cells

Creates union_target_lengths

parameter union_exiting_cells(advanced)
Flattened list of exiting cells in each union.

Type list of cell names (each element is a string)

parameter union_exiting_lengths(advanced)
Number of cells per union in the exiting surface list.

Type list in which each element is a integer

parameter union_target_cells(advanced)
Flattened list of target cells in each union.

Type list of cell names (each element is a string)

parameter union_target_lengths(advanced)
Number of cells per union in the target surface list.

Type list in which each element is a integer

3.21.19 [TALLY][BATCH_MESH]

Tally reaction rates using batch statistics (experimental!).

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the tally.

Type string without special characters

parameter normalization
Constant multiplicative factor to apply to tally results.

Default 1.0

Type positive real number

database [OUTPUT]
Output method for the batch tallies. See [TALLY][BATCH_MESH][OUTPUT] (page 166).

160

Default (empty hdf5 database)

parameter reactions
parameter rxn

Reactions to calculate for this tally.

Default flux nu_fission

Type list in which each element is a flux, pos_partial_current_x,
neg_partial_current_x, pos_partial_current_y, neg_partial_current_y,
pos_partial_current_z, neg_partial_current_z, total, absorption,
scattering, transfer_1n, transfer_2n, transfer_3n, transfer_4n,
fission, nu_fission, kappa_sigma, kappa_sigma_f, or kappa_sigma_c

parameter x
Mesh tally coordinates along the X axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

parameter y
Mesh tally coordinates along the Y axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

parameter z
Mesh tally coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

3.21.20 [TALLY][MESH][FILTERS]

Tally filtering options.

parameter birth_cells
Only tallies particles born in the given cells.

Default ---

Type list in which each element is a string

parameter birth_energy_range
parameter be_range

Lower and upper birth energy of particles to tally.

Default ---

Units eV

Type monotonically increasing list (each element is a positive real number)

parameter birth_matids
Only tallies particles born in the given materials.

Default ---

161

Type list in which each element is a positive integer

parameter particle_type
parameter pt

Only tallies particles of the given type.

Default ---

Type list in which each element is a particle type (n, neutron, p, or photon)

parameter source_names
Only tallies particles born in the given sources.

Default ---

Type list in which each element is a string

3.21.21 [TALLY][DIAGNOSTIC=PATHLENGTH]

The path length diagnostic produces a distribution of the path length traveled by a particle between events.
Note that this is not the same as the true path length distribution (distance between collisions), as the events
considered by Shift include material boundary crossings, problem boundary crossings, etc.

parameter event_bins
Lower bin boundaries for the number of events per history.

Type monotonically increasing list (each element is a non-negative integer)

parameter pl_bins
Lower bin boundaries for the traversed path lengths in each event.

Type monotonically increasing list (each element is a positive real number)

3.21.22 [TALLY][DIAGNOSTIC=COLLISION]

The collision diagnostic tallies the number of collisions per history as a function of material, nuclide, and
reaction ID.

3.21.23 [TALLY][DIAGNOSTIC=SOURCE]

This diagnostic tally is provided to calculate the source density binned into spatial cells. It also calculates the
particle source density (i.e., binning n(~r) rather than wn(~r)) to assist in the construction of biased sources.

parameter x
Mesh tally coordinates along the X axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

parameter y
Mesh tally coordinates along the Y axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

parameter z
Mesh tally coordinates along the Z axis.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

162

3.21.24 [TALLY][DIAGNOSTIC=HISTORY]

The history diagnostic tallies every event in a particle’s lifetime. Currently, all particle histories are tallied,
and only one processor writes the histories.

parameter begin_history
First history for which events will be saved.

Default 0

Type non-negative integer

parameter domain
Domain on which history events will be saved.

Default 0

Type non-negative integer

parameter end_history
Last + 1 history for which events will be saved.

Default 0

Type non-negative integer

3.21.25 [TALLY][DIAGNOSTIC=DEBUG_HISTORY]

Write events for failed particle histories.

3.21.26 [TALLY][DIAGNOSTIC=DEBUG]

The debug diagnostic currently records the number of events per particle history, but it will be extended to
provide other useful high-level debug information.

3.21.27 [TALLY][DIAGNOSTIC=HISTORY_TIME]

Write transport time for each particle history.

3.21.28 [TALLY][DIAGNOSTIC=FISS_SITE]

The fission site diagnostic records the locations where fission occurs for every kcode cycle provided by
write_cycles. These are written to the

parameter write_cycles
parameter wc

List of cycles in which to write the fission source.

Default ---

Type list in which each element is a non-negative integer

3.21.29 [TALLY][DIAGNOSTIC=SPLIT]

Write particle variance reduction splitting locations.

3.21.30 [TALLY][DIAGNOSTIC=ROULETTE]

Write particle variance reduction rouletting locations.

163

3.21.31 [TALLY][SENSITIVITY][RESPONSE]

Define a sensitivity response.

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter emax
parameter ehigh

Upper energy threshold for this response.

Optional

Units eV

Type positive real number

parameter emax_out
Upper exiting energy window for this response.

Optional

Units eV

Type positive real number

parameter emin
parameter elow

Lower energy threshold for this response.

Optional

Units eV

Type positive real number

parameter emin_out
Lower exiting energy window for this response.

Optional

Units eV

Type positive real number

parameter materials
parameter mats

Material names to include in this response.

Default '*'

Type list in which each element is a string

parameter name
Short title or label for the response.

164

Type string without special characters

parameter nuclide
Nuclide to include in this response.

Type Nuclide name or ZAID, or ‘*’ for all nuclides

parameter reaction
Nuclide reaction MTs to include in this response.

Default 18

Type MT number or name, or 0 for FLUX (e.g., N_GAMMA, 102)

3.21.32 [TALLY][SENSITIVITY][RATIO]

Define a ratio of two responses to calculate.

parameter denom
Denominator’s response name.

Type string without special characters

parameter description
parameter desc

Optional longer descriptive string.

Default ''

Type string

parameter name
Short title or label for the system response.

Type string without special characters

parameter numer
Numerator’s response name.

Type string without special characters

3.21.33 [TALLY][SURFACE_CENSUS][TAGS]

Particle tagging options.

parameter birth_angle
parameter brth_dir

Tag each particle with its birth angle.

Default False

Type boolean

parameter birth_cell_label
parameter brth_cell

Tag each particle with its birth cell label.

Default False

Type boolean

165

parameter birth_energy
parameter brth_e

Tag each particle with its birth energy.

Default False

Type boolean

parameter birth_mat_label
parameter brth_mat

Tag each particle with its birth material label.

Default False

Type boolean

parameter birth_position
parameter brth_pos

Tag particles with its birth position.

Default False

Type boolean

parameter source_name
parameter src_name

Tag each particle with the name of its originating source.

Default False

Type boolean

3.21.34 [TALLY][BATCH_MESH][OUTPUT]

Table 24: Available types for the [OUTPUT] database

Type Description Applicability

hdf5 (page 166) Write to the standard serial HDF5 file
adios (page 166) Write to an independent ADIOS file ‘ADIOS’ is enabled in this build

3.21.35 [TALLY][BATCH_MESH][OUTPUT=HDF5]

Write to the standard serial HDF5 file.

3.21.36 [TALLY][BATCH_MESH][OUTPUT=ADIOS]

Write to an independent ADIOS file.

parameter bufsize
ADIOS buffer size.

Default 4194304

Units kB

Type positive integer

166

parameter output
Output filename.

Type file path to write (extension ‘.bp’)

parameter time_bufsize
ADIOS time aggregation size.

Optional

Units kB

Type positive integer

parameter transport
Aggregation and write method.

Default MPI, or if using a Lustre PFS, MPI_LUSTRE

Type string

parameter transport_params
Parameters to pass to the transport method.

Default ''

Type string

parameter verbosity
ADIOS log verbosity.

Default warning

Type silent, error, warning, info, or debug

3.22 SHIFT MONTE CARLO SOLVER: [SHIFT]

Shift is the Monte Carlo radiation transport code in Exnihilo. Like all Monte Carlo methods, the output is an
estimation of the true solution (the mean of a tally), and a reported error bound provides an estimation of the
error in this estimate. In accordance with the central limit theorem, as the number of transported particles
increases, the output will converge to the true solution, and the variance will diminish proportionally to the
square root of the number of particles.

Two classes of problems can be solved with Shift: eigenvalue (“kcode”) solutions for steady-state fissionable
systems, and fixed-source solutions for problems with a constant source of particles. The eigenvalue solution
technique is described in [SHIFT][KCODE] (page 169). The only option in Shift that does not apply to
kcode mode is num_histories (page 169). However, fixed-source problems are also the only ones that support
hybrid methods.

The [SHIFT][DECOMPOSITION] (page 169) block enables Shift’s domain decomposition feature for large
problems. Currently, only mesh tallies are decomposed; compositions, cell tallies, and the problem geometry
are all replicated. Some diagnostic tallies and other features may not be usable when domain decomposition
is enabled.

Shift also supports an experimental GPU mode when built with CUDA support. It supports a limited subset
of Shift features, restricting the available tallies, models, and physics options.

167

The behavior of Shift is strongly affected by the [HYBRID] (page 224) block corresponding to the hybrid
fixed-source problem mode. Hybrid methods provide weight windows for variance reduction in Shift, and
they can additionally bias the sources (page 56) to improve the chance that an emitted particle contributes to
the user’s tallies.

With the exception of the automatic k-effective tally and associated diagnostics in eigenvalue mode, Shift’s
tallies are specified in the [TALLY] (page 113) database.

parameter arch
Architecture type.

Default cpu

Type cpu or gpu

Applicable when ‘SHIFT_CUDA’ is enabled in this build

parameter batch_size
Number of particles per batch for computing tally statistics.

Optional

Type positive integer

Applicable when

• arch is gpu; and

• problem mode is adjoint, forward, or hybrid

database [DECOMPOSITION]
Domain decomposition options. See [SHIFT][DECOMPOSITION] (page 169).

Default (empty none database)

parameter device_id
Device id of GPU.

Default 0

Type non-negative integer

Applicable when arch is gpu

parameter do_transport(advanced)
Transport particles instead of merely setting up the problem.

Setting do_transport to false is a way to ensure problem integrity without running an expensive
transport calculation. It disables transport itself but allows the rest of the code (including building
sources, tallies, and physics) to run. This is similar to parm=check in SCALE.

Default True

Type boolean

parameter gpu_vector_size
Maximum size of GPU particle vector.

Optional

Type positive integer

168

database [KCODE]
Eigenvalue solution options. See [SHIFT][KCODE] (page 169).

Applicable when problem mode is kcode

parameter num_histories
parameter np

Number of particle histories.

Type positive integer

Applicable when problem mode is adjoint, forward, or hybrid

parameter physics(advanced)
Name of the physics DB to use.

Default the name of the last physics database

Type string without special characters

database [TRANSPORTER]
Transport communication options. See [SHIFT][TRANSPORTER] (page 171).

Default (empty database)

database [VR]
Variance reduction options. See [SHIFT][VR] (page 172).

Default (empty database)

3.22.1 [SHIFT][DECOMPOSITION]

This database determines how the Shift Monte Carlo problem is spatially decomposed. If not present, the
problem will be fully replicated.

Table 25: Available types for the [DECOMPOSITION] database

Type Description Applicability

none (page 174) Fully domain-replicated
bmesh (page 175) Boundary mesh for domain decomposition

3.22.2 [SHIFT][KCODE]

Criticality (or eigenvalue, or kcode) calculations involve iteratively sampling and transporting “generations”
of fission neutrons. Several different parameters are needed to specify these generations.

The power iteration method used by Shift (and traditional Monte Carlo codes) may require many particle
generations before the fission source converges. The generation at which the fission source converges can be
estimated with the help of two diagnostics that Shift tallies by default:

• Shannon entropy, which provides a scalar value summarizing the distribution of occupied spatial cells
in the problem, and

• Spatial moments, which provide a low-order approximation of the global particle distribution and
shape.

169

parameter convergence_method
Kcode cycle convergence criteria for inactive and active cycles.

Shift supports different convergence criteria for switching from inactive to active cycles and for
completing the kcode solve. Currently, two traditional methods are supported. The number of inactive
cycles is always fixed by the user and specified with the num_inactive_cycles parameter; this
number should be high enough that the fission source distribution is converged before tallying begins.

If the convergence method is set to count, then the number of active cycles is also set by the user with
the num_cycles parameter, which is the total of inactive plus active cycles. This method should be
used if a certain number of particles is needed to be run before finishing the problem (e.g., if a mesh
tally is to be used).

The second implemented option is count_ksig, in which a counted number of inactive cycles is run,
but the batch-estimated standard deviation of keff is used to stop the active cycles.

Default count

Type count or count_ksig

parameter entropy_mesh(advanced)
How the entropy mesh is specified.

The default entropy grid uses the Shift decomposition (which by default is the problem’s extents, which
are automatically calculated in some geometry types) as its outer extents. If unspecified, Shift tries to
build a mesh with:

Ncells = max(Np/10, 64) ,

where Np is the number of particles per cycle.

Default manual when entropy mesh input is given

Type automatic or manual

parameter initial_keff
parameter initk

Initial keff value.

Default 1.0

Type positive real number

parameter keff_sigma_active
parameter sig

Standard deviation of keff at which to stop active cycles.

Type positive real number

Applicable when convergence_method is count_ksig

parameter num_cycles
parameter nk

Number of active + inactive kcode cycles.

Type integer

parameter num_histories_per_cycle

170

parameter npk
Number of histories per cycle.

Type positive integer

parameter num_inactive_cycles
parameter nik

Number of inactive kcode cycles.

Type integer

parameter x_entropy
Boundaries in x for the Shannon entropy mesh.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when entropy_mesh is manual

parameter y_entropy
Boundaries in y for the Shannon entropy mesh.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when entropy_mesh is manual

parameter z_entropy
Boundaries in z for the Shannon entropy mesh.

Units cm

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when entropy_mesh is manual

3.22.3 [SHIFT][TRANSPORTER]

Transport communication options.

parameter bank_size_warnings
Initial bank size warnings to print per domain.

Default 2000

Type non-negative integer

parameter error_tolerance
Fraction of lost particles to tolerate before aborting.

Some especially complex models occasionally have nearly undetectable geometry errors. However,
when running enough particles, inevitably some will be lost. To support transport on these models
despite any errors, the tolerance parameter can be set to a higher value. This number is multiplied into
the total number of particles to be run (in the case of an eigenvalue problem, the number of particles in
a single generation) and divided amongst all the parallel processes. When that number is reached, the
transport run will be aborted. The tolerance is rounded upward so that each domain will accept at least
one lost particle.

Setting the error tolerance too high (a statistically significant number of particles in an important part
of the problem) will result in erroneous tally results.

Finally, note that because of particle splitting, multiple particles could be lost per actual source particle.

171

Default 1e-06

Type real number inside (0, 1)

database [GENERATIONS]
Synchronous DD control. See [SHIFT][TRANSPORTER][GENERATIONS] (page 175).

Default (empty constant database)

Applicable when Shift spatial partitioning is domain decomposed

parameter max_local_warnings
Max number of lost particle warnings to print per domain.

On complex inputs with known modeling errors, it may be infeasible to correct the model for a test run,
but running a trillion particles may produce a million error messages, which (on large parallel systems)
will slow down program execution significantly due to the increased I/O.

Setting this value will suppress warnings after the counter is reached.

Default 10

Type non-negative integer

parameter method
Domain-decomposed transport method.

Default sync

Type sync

Applicable when Shift spatial partitioning is domain decomposed

parameter verbosity
How often to print about particles being transported.

Default none if kcode, low otherwise

Type none, low, or high

3.22.4 [SHIFT][VR]

Variance reduction is key to making Monte Carlo calculations tractable. Although Shift supports a fully
analog mode, in which particles have a weight of either one or zero to mimic the physical event-by-event
behavior, the Monte Carlo solution is almost exclusively used with some form of variance reduction.

The key concept behind variance reduction is adding a dimension to the phase space of the transport equation:
weight. The weight-averaged Monte Carlo particle density is an estimate of the true particle density because
a single Monte Carlo particle can now represent an average of multiple physical particles.

The simplest form of variance reduction, implicit capture, prevents particles from being physically absorbed.
Instead, the weight of the particle is reduced proportionally to the chance that it would have been absorbed
during its step. When a particle reaches a sufficiently small weight, it no longer contributes meaningfully
to the solution but still requires equal computational resources as an important (high-weight) particle. To
reduce the number of low-weight particles in the problem, the Russian roulette (or simply roulette) method
will probabilistically kill particles below a specified weight. The weight of particles that survive the roulette
increases proportionally to the inverse of the fraction of particles that survive the roulette process, maintaining
a “fair game” and the resulting solution.

172

A more complex variance reduction method is that of weight windows, which introduces a spatially dependent
“target weight” rather than a constant value as with Russian roulette. Besides killing particles of low weight,
weight windows will also split particles that have high weight into multiple particles closer to the target
weight so that multiple potential pathways for a particle’s behavior can be averaged into the final result.
Weight windows can be provided as input or generated automatically by Denovo. The weight window options
are provided in the Hybrid methodology: [HYBRID] (page 224) documentation.

The Consistent Adjoint Driven Importance Sampling (CADIS) family of methods extends the weight window
method by biasing particle sources so that the weight of a particle at birth corresponds to the weight window
at its point in phase space. Consequently, particles are more likely to be born in the important regions of
a problem rather than being rouletted or split immediately at birth. CADIS was originally designed for
importance maps generated by a single tally of interest, but biased sources can be constructed “consistently”
for any provided weight window map. Source biasing can be enabled for each source using the Particle
source definitions: [SOURCE] (page 56) options.

deleted apply_ww
Entry apply_ww has been deleted: Weight windows are now applied at a set of events specified by the
vr_events parameter.

parameter method
parameter vr

Variance reduction method.

Default ‘ww’ when hybrid, otherwise ‘roulette’

Type ww, analog, or roulette

parameter minimum_thickness
parameter min_thick

Minimum window optical thickness above which to perform VR.

Default 0.01

Type non-negative real number

Applicable when Weight window lookup vr_events has enabled tracking

parameter output
Write weight window centers to the output file.

Default True

Type boolean

Applicable when method is ww

parameter vr_events
When to apply weight windows.

This entry specifies which transport events should trigger a weight window lookup, thereby potentially
initiating a particle splitting or rouletting. A weight window lookup is always performed after a
collision. Additional lookup events are precollision, which causes a weight window lookup before a
collision, surface, which causes a weight window lookup every time a geometric surface is crossed,
mfp, which causes a weight window lookup every time a particle streams a mean free path, and tracking,
which causes a particle to track through the weight window grid and look up the weight windows
every time a weight window grid plane is crossed. These different lookup events may be used in any
combination.

173

Default tracking

Type list in which each element is a precollision, mfp, surface, or tracking

Applicable when method is ww

parameter weight_cutoff
parameter wc

Particle weight cutoff for roulette.

Default 0.25

Type non-negative real number

Applicable when method is roulette

parameter weight_survival
parameter ws

Particle weight survival for roulette.

Default 0.5

Type non-negative real number

Applicable when method is roulette

parameter ww_decomp
Whether the weight window adjoint flux should be decomposed.

Default full

Type full or separable

Applicable when method is ww

parameter ww_lower_factor
parameter wwlow

Lower weight window ratio.

Default 0.5

Type real number inside (0, 1)

Applicable when method is ww

parameter ww_upper_factor
parameter wwhigh

Upper weight window ratio.

Default 2.5

Type real number greater than 1

Applicable when method is ww

3.22.5 [SHIFT][DECOMPOSITION=NONE]

Fully domain-replicated.

174

3.22.6 [SHIFT][DECOMPOSITION=BMESH]

Boundary mesh for domain decomposition.

parameter boundary_condition
Boundary condition for each side of the boundary mesh.

Default vacuum vacuum vacuum vacuum vacuum vacuum

Type list of boundary conditions on -X,+X,-Y,+Y,-Z,+Z (each element is a vacuum,
reflect, rotate, or periodic)

parameter overlap
Fraction of DD domain overlap.

Default 0.0

Type real number inclusive [0.0, 1.0]

Applicable when Shift spatial partitioning is domain decomposed

parameter subblock_procs
Processor allocation for blocks of the boundary mesh.

Default ---

Type list in which each element is a positive integer

postprocessor
Ensure that the Shift spatial decomposition is compatible with the number of processors if using a
[RUN] block.

postprocessor
Check to make sure that Tpetra is enabled in build for DD decompositions.

Applicability Shift spatial partitioning is domain decomposed

parameter x_partition
parameter x

Boundary mesh along the X axis.

Type monotonically increasing list with at least two values (each element is a real number)

parameter y_partition
parameter y

Boundary mesh along the Y axis.

Type monotonically increasing list with at least two values (each element is a real number)

parameter z_partition
parameter z

Boundary mesh along the Z axis.

Type monotonically increasing list with at least two values (each element is a real number)

3.22.7 [SHIFT][TRANSPORTER][GENERATIONS]

Table 26: Available types for the [GENERATIONS] database

Type Description Applicability

constant (page 176) Same number of iterations per cycle
three_component (page 176) Advanced iteration flexibility

175

3.22.8 [SHIFT][TRANSPORTER][GENERATIONS=CONSTANT]

Same number of iterations per cycle.

parameter num_iterations
Number of iterations per generation.

Default 100

Type positive integer

3.22.9 [SHIFT][TRANSPORTER][GENERATIONS=THREE_COMPONENT]

Advanced iteration flexibility.

parameter bound1
First boundary of three-component generations.

Default 20.0

Type non-negative real number

parameter bound2
Second boundary of three-component generations.

Default 50.0

Type positive real number

parameter exponent
Exponential decay constant of three-component generations.

Default 0.025

Type non-negative real number

parameter intercept
Intercept of first component of three-component generations.

Default 100.0

Type positive real number

parameter minimum
Minimum iterations of three-component generations.

Default 100.0

Type positive real number

parameter slope
Slope of first component of three-component generations.

Default 5.0

Type non-negative real number

3.23 DENOVO DETERMINISTIC SOLVER: [DENOVO]

Denovo is the parallel deterministic solver inside the Exnihilo code suite. It solves the steady-state Boltzmann
transport equation by discretizing it in space, angle, and energy. The [DENOVO] database specifies these
discretization parameters as well as numerical solver parameters.

176

3.23.1 DENOVO APPLICATIONS

Denovo is often used to generate importance maps for variance reduction, typically using the [HYBRID]
(page 224) block. The figure of merit of a tally,

FOM =
1

σ2T
,

where σ2 is the variance of the tally in question and T is the time to solution, can improve by orders of
magnitude given a good approximation to the importance map. However, even with a bad approximation to
an adjoint transport solution for an importance map, the expected value of the Shift solution will not change
as a result of the Denovo solver parameters. The figure of merit will simply be lowered, and the estimation of
the variance for an unconverged solution may also be affected. This principle of hybrid methods means that
coarse and fast Denovo solves can be adequate to improve the convergence rate of a Shift calculation.

In contrast to hybrid applications, using any discrete ordinates code to generate final results for an analysis
usually requires a great deal of care and experience to produce accurate solutions. Significant errors can be
introduced by poor approximations to:

• the spatial grid (e.g., by not capturing a streaming pathway);

• the spatial integration method (e.g., by using a difference method for optically thick cells) (see the
method parameter (page 180));

• the energy discretization (e.g., by failing to capture self-shielding effects) (see Multigroup physics:
[PHYSICS=mg] (page 96)); and

• the angular discretization (e.g., by ray effects in optically thin regions) (see [DEN-
OVO][QUADRATURE] (page 184)).

Warning: The default settings for Denovo are generally for obtaining qualitatively accurate answers
for use in hybrid schemes or for initial problem scoping. Obtaining accurate answers for most realistic
problems typically requires a good deal of experience, parametric studies, and finesse.

Denovo has two categories of options for the angular discretization: discrete ordinates (SN), in which particles
are constrained to travel along specific angular directions; and spherical harmonics (SPN), which is similar in
treatment to the diffusion approximation. The method parameter (page 180) chooses between the two. The
various SN discretization closure equations are described in the equations parameter (page 179).

3.23.2 SOLVER OVERVIEW

The linear algebraic formulation of these deterministic approximations to the transport equation require
numerical methods to solve. (Analytically solving the exact representation of the discretized transport
equation is intractable except for toy problems.) The solution methodology will vary depending on whether
the input is a “fixed source” problem

Ax = b

or an k-eigenvalue problem

FAx =
1
k

x .

177

Fixed-source problems without upscattering can be solved exactly with a series of consecutive within-group
solutions: the solution vector is the flux (and higher-order moments) whose components are coupled by the
spatial and angular behavior of the problem. This solution is the within-group (page 200) solve and can be
performed with several numerical methods.

Upscattering introduces a dependency between multiple within-group solutions and therefore generally
requires an outer level of iteration. The solvers that converge this multigroup solution are described in
[DENOVO][SOLVER][UPSCATTER] (page 198). It is important to note that to support more advanced
methods and to improve the parallelism of Denovo solves, there is an option to treat all groups as upscatter
groups (even if the cross sections physically prevent upscatter) in order to solve the groups simultaneously.
This option is discussed in the upscatter_groups parameter (page 194).

Finally, the convergence of an eigenvalue problem generally requires an additional level of iteration. The
options for converging the eigenvalue (a measure of criticality of the problem) and eigenvector (the distribution
of neutrons at a critical state) are described in [DENOVO][SOLVER=eigenvalue] (page 195).

For a more detailed discussion of Denovo’s solution methodology and discrete ordinate methodology in
general, see [4] and [11] and the references therein.

3.23.3 PERFORMANCE CONSIDERATIONS

The number of degrees of freedom D in a Denovo SN calculation is

D = Nu × Nc × Nm × Na × Ng ,

where Nu is the number of spatial unknowns (cf. the equations parameter (page 179)), Nc is the number of
cells (determined by the spacing of x, y, and z), Nm is the number of moments (cf. the pn_order physics
parameter (page 102)), Na is the number of discrete angles (see [DENOVO][QUADRATURE] (page 184)),
and Ng is the number of energy groups. This value is proportional to the number of floating point operations
per transport sweep when all groups are being swept simultaneously (upscatter_groups (page 194) is set to
“all”).

A more important figure for some users will be the memory consumption of Denovo rather than the time to
solution. The Denovo state vector (or solution vector) does not store angular fluxes; rather, it stores angular
moments up to the specified maximum scattering order. It therefore contains M elements, with

M = Nu × Nc × Nm × Ng .

This state vector is distributed across all MPI processes in a parallel run (see [DENOVO][DECOMPOSITION]
(page 183)). In most problems, the state vector dominates memory usage. However, in problems with an
unusually large number of groups, it is important to be aware of the memory footprint of scattering matrices:

Mxs ∝ N2
g Nmixtures

The number of mixtures depends both on the original compositions of the input model and on the mix
tolerance (page 187) used in the model ray tracing. Also critically important is that the number of mixtures
on each domain depends on the complexity of the spatial region local to that domain! Since Denovo spatially
partitions the problem to equally distribute the number of cells along the xy plane, some complex domains
may end up with a hundred times as many mixtures as the simpler domains, and that memory requirement
could contribute significantly to the total Denovo memory usage.

parameter arch
Architecture type.

178

Default cpu

Type cpu or gpu

Applicable when

• ‘KBA_CUDA’ is enabled in this build; and

• problem mode is forward or kcode; and

• Denovo discretization method is ld or sc

database [BOUNDARY]
Boundary condition specification. See [DENOVO][BOUNDARY] (page 183).

Default (empty vacuum database)

database [DECOMPOSITION]
Denovo space-energy decomposition. See [DENOVO][DECOMPOSITION] (page 183).

Default (empty database)

parameter dimension(advanced)
Spatial dimension of the problem.

Default based on spatial discretization equations

Type integer 2 or 3

parameter disable
Choose to skip the ‘solve’ step or both ‘solve’ and construction.

Default none

Type none, transport, or state

parameter equations
parameter eq

Closure equations for the SN approximation in a cell.

Like most options for deterministic methods, the choice of spatial discretization (closure equations for
the SN approximation) involves a trade-off between performance and accuracy. In this case, inaccuracy
can result in numerical instability and negativities in the computed solution. The performance varies
by discretization partly due to the solution method (e.g., the exponential function evaluations in step
characteristics) and the increased memory costs of discretizations that have more unknowns per spatial
cell.

The following spatial discretizations are available for 3D problems:

Table 27: Denovo spatial discretization options.

Value Discretization Unknowns

sc Step characteristics 1
ld Linear discontinuous finite element 4
tld Trilinear discontinuous finite element 8
twd Theta-weighted diamond difference 1
wdd Weighted diamond difference 1
wdd_ff Weighted diamond difference with flux fixup 1

179

Additionally, for 2D problems, a step characteristics sc_2d (1 unknown) option and a bilinear discon-
tinuous bld_2d (4 unknowns) finite element discretization are available.

The step characteristics (SC) equations guarantee positive solutions and offer good accuracy for a
wide range of problems. This should be the preferred method for difficult shielding problems and for
problems in which a coarse spatial mesh must be used.

The linear discontinuous (LD) finite element method (FEM) is often more accurate than SC, but it does
not guarantee positivity of the solution. The trilinear discontinuous (TLD) FEM is more accurate and
rigorous in the asymptotic limit of diffusive cells, but it still does not guarantee positivity. For this
reason, the FEM group of methods is not usually recommended for difficult shielding problems or
problems where the spatial mesh does not adequately resolve the physics of the problem. They are
most appropriate for problems that are not prone to negative solutions (such as reactors) and problems
in which a finely resolved spatial mesh is possible.

The diamond difference methods, twd, wdd, and wdd_ff, are available primarily for direct comparisons
to legacy radiation transport solvers and are not recommended.

Default sc

Type sc, sc_2d, bld_2d, ld, tld, twd, wdd, or wdd_ff

Applicable when /denovo/disable is none or transport and /denovo/method is sn

parameter first_group
The first energy group to solve.

Optional

Type non-negative integer

parameter last_group
The last energy group to solve.

Optional

Type non-negative integer

postprocessor
Check first_group and last_group for consistency.

parameter log_memory(advanced)
Periodically print memory usage to screen.

Default value of log_memory in [OUTPUT]

Type boolean

command logically_uniform_grid
Generate a grid (approximately uniform in num cells) from the given extents.

Creates x

Creates y

Creates z

preprocessor (advanced)
Change deprecated SN ‘method’ values to ‘equations.’

180

parameter method
Deterministic solution method.

This parameter chooses between the discrete ordinates (SN) and simplified spherical harmonics (SPN)
methods.

The discrete ordinates method is suitable for a variety of shielding applications and for accelerating
Monte Carlo transport by estimating the global (space and energy) importance field with the adjoint
flux. It is subject to discretization error not only by the spatial grid but also by the angular quadrature.
Converging to a true monoenergetic transport solution requires simultaneous refinement in both angle
and space.

The Simplified PN finite volume discretization approach (SPN) provides fast, accurate solutions
primarily for light water reactor eigenvalue problems. The SPN equations introduce approximations
not present in other discretizations and are not recommended for general purpose (i.e., non-reactor)
problems. In particular, problems with void or near-void regions cannot be handled accurately by
this method. It should also be noted that, unlike the more rigorous PN approximation, solutions with
increasing SPN order will not converge to the actual transport solution.

Full details on the mathematical methods used in Denovo can be found in the Exnihilo methods manual.

Default sn

Type spn or sn

Applicable when transporter state is constructed

database [OUTPUT]
HDF5 output options. See [DENOVO][OUTPUT] (page 189).

Default (empty database)

parameter output_spn_matrices(advanced)
Output SPN matrices for analysis.

Default False

Type boolean

Applicable when /denovo/disable is none or transport and /denovo/method is
spn

preprocessor (advanced)
Set disable state for mode raytrace.

parameter physics
Name of the associated MG physics database.

Default the name of the MG physics database

Type string without special characters

database [QUADRATURE]
Discrete ordinates quadrature. See [DENOVO][QUADRATURE] (page 184).

Default (empty database)

Applicable when /denovo/disable is none or transport and /denovo/method is sn

181

database [RAYTRACE]
Problem discretization options. See [DENOVO][RAYTRACE] (page 187).

Default (empty database)

Applicable when model type is not ‘mesh’

database [SILO]
Silo output options. See [DENOVO][SILO] (page 190).

Default (empty database)

Applicable when ‘silo’ is enabled in this build

database [SOLVER]
Linear algebraic solver options. See [DENOVO][SOLVER] (page 192).

Default (empty database)

Applicable when transporter state is constructed

database [SOURCE]
Source discretization options. See [DENOVO][SOURCE] (page 188).

Default (empty database)

Applicable when problem mode is adjoint, forward, or hybrid

parameter spn_order
Discretization order of SPN .

Default 1

Type positive integer

Applicable when /denovo/disable is none or transport and /denovo/method is
spn

command uniform_grid
Generate a grid (approximately uniform in cell size) from the given extents.

This command is primarily for scalability testing. It will generate a mesh with approximately uniform
cells, limited by the provided number of cells. An optional parameter snaps the grid lengths to the
nearest multiple (i.e., the number of cells in each direction will be divisible by this number).

It accepts the following sequence of arguments

xmin, xmax, ymin, ymax, zmin, zmax, num_cells [, multiple]

Creates x

Creates y

Creates z

parameter x
Mesh coordinates along the X axis.

Type monotonically increasing list with at least two values (each element is a real number)

182

Applicable when model type is not ‘mesh’

parameter y
Mesh coordinates along the Y axis.

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when model type is not ‘mesh’

parameter z
Mesh coordinates along the Z axis.

Type monotonically increasing list with at least two values (each element is a real number)

Applicable when

• model type is not ‘mesh’; and

• Problem is 3-D

postprocessor
Print the number of cells in the mesh.

Applicability model type is not ‘mesh’

Applicability Problem is 3-D

3.23.4 [DENOVO][BOUNDARY]

Table 28: Available types for the [BOUNDARY] database

Type Description Applicability

vacuum (page 192) Vacuum boundaries
reflect (page 193) Reflecting and vacuum boundaries
isotropic (page 193) One or more isotropic incident boundaries

3.23.5 [DENOVO][DECOMPOSITION]

The Denovo decomposition determines how the solution is distributed across the computational resources. The
KBA decomposition splits the Denovo mesh into columns along an xy grid specified by dividing the number
of mesh cells evenly by x_blocks and y_blocks. For problems with upscattering, the energy domain can
also be decomposed into an orthogonal dimension using energy_sets. The number of processors being
used must equal the product of these three parameters:

Np = NxNyNE .

If using a [RUN] block (page 29), Omnibus will automatically provide reasonable values for the decomposi-
tion.

parameter energy_sets
The number of energy sets.

Default 1

Type non-negative integer

183

preprocessor (advanced)
If a [RUN] block is present, come up with a logically square KBA decomposition.

parameter x_blocks
parameter x

The number of spatial partitions along the x axis.

Type non-negative integer

parameter y_blocks
parameter y

The number of spatial partitions along the y axis.

Type non-negative integer

postprocessor
Ensure Denovo decomposition is compatible with number of processors.

parameter z_blocks
parameter z

The number of pipelining blocks along the z axis.

Default Default z_blocks to min(nx,ny)

Type non-negative integer

Applicable when

• Problem is 3-D; and

• /denovo/disable is none or transport and /denovo/method is sn

3.23.6 [DENOVO][QUADRATURE]

The runtime of an SN calculation is proportional to the number of quadrature angles, in the limit of a large
number of angles. To summarize from the ADVANTG 3.0 manual [7]:

• Level-symmetric quadratures have historically been used most often. These consist of rotationally
symmetric quadratures that have positive weights up to S 20. In three dimensions, there are N×(N +2)/8
angles per octant, where N is the order of the quadrature. Therefore, the order of these quadratures
must be even. These quadratures tend to exhibit the most ray effects.

• Gauss-Legendre product quadratures are formed by taking the Cartesian product of a set of uniformly
distributed azimuthal angles and a 1D GaussLegendre quadrature in the polar angle.

• Quadruple range (QR) product quadratures exactly integrate maximal-order products of sines and
cosines of the polar and azimuthal angles [12]. These quadratures generally perform well across a broad
range of transport problems and tend to exhibit far less ray effects than level-symmetric quadratures.

• Linear-discontinuous finite element (LDFE) quadratures approximate the angular flux using direction
cosines [13]. They are determined by requiring that the integration of the basis functions is equal to
the surface area of a unit sphere. The advantage of these LDFE sets is that they have positive weights
and are rotationally symmetric about the x, y, and z axes. For a quadrature of order N, there are 4(N+1)

angles per octant, so the order can be even or odd.

184

parameter construction
Construction methodology for the quadrature set.

Table 29: Denovo quadrature construction options.

Construction Description

levelsym Level-symmetric quadrature set, which features rotationally
invariant angular positions and weights

product Product quadrature set, which has a specified number of
azimuthal angles per polar angle and a specified number of
polar angles.

product_vec A specialization of the product quadrature set that allows
the number of azimuthal angles to be different at each polar
angle.

Each quadrature set only supports a limited subset of construction options.

Table 30: Denovo quadrature availability matrix.

Quadrature levelsym product product_vec

levelsym ×

glproduct ×

qr × × ×

Default based on quadrature type

Type levelsym, product, or product_vec

Applicable when quadrature is levelsym, glproduct, or qr

postprocessor
Validate construction of quadrature sets.

parameter input
User-specified quadrature set file.

The Denovo quadrature may be manually input as an ASCII file. The format is:

• Optional comments have a # at the beginning of the line

• Each line contains the whitespace-separated tuple (µ, η, ξ,w), which is the xyz projection of the
angle tied to the angle’s associated weight.

• Angles for just a single octant (or quadrant if 2D) may be defined, or all angles in all octants may
be defined. (This is checked by summing the weights over the input angles.)

An example input for S 2 is

S2 quadrature input
0.57735026919 0.57735026919 0.57735026919 1.0

Type file path for reading

185

Applicable when quadrature is userdefined

parameter ldfe_order
Order for the LDFE quadrature set.

Default 1

Type positive integer

Applicable when quadrature is ldfe

parameter num_azi
Number of azimuthal angles per level per octant.

Default 4

Type positive integer

Applicable when construction is product

parameter num_azi_vec
List of the number of azimuthal angles per polar angle per octant, ordered from pole to equator.

Default ---

Type list in which each element is a positive integer

Applicable when construction is product_vec

parameter num_polar
Number of polar angles per level per octant.

Default 4

Type positive integer

Applicable when construction is product or product_vec

parameter order
Level-symmetric quadrature set order.

Default 10

Type non-negative integer

Applicable when construction is levelsym

parameter polar_axis
Axis of rotation for product quadrature sets.

Default z

Type x, y, or z

Applicable when construction is product or product_vec

parameter quadrature
Discrete ordinates quadrature set class.

Default ‘qr’ unless input or ldfe_order are given

Type levelsym, glproduct, qr, ldfe, or userdefined

186

3.23.7 [DENOVO][RAYTRACE]

Denovo’s Cartesian “brick mesh” spatial discretization requires cross sections to be homogenized within
each spatial cell (a rectangular prism). Whereas legacy solvers required the user to specify a material for
each spatial cell, Denovo can assist by using the same particle tracking engine as Shift (page 167) to map the
continuous-in-space geometry specification of a model (page 43) to the Denovo mesh.

This raytracing is performed in parallel, with each local Denovo KBA decomposition generating an indepen-
dent set of local materials and mixtures.

The options in this block determine how ray tracing is performed.

parameter axes
Axis/axes along which to fire rays for ray trace.

Default xyz

Type axis or axes (‘x’,’zy’,’xyz’)

parameter error_tolerance
Fraction of lost rays to tolerate before aborting.

Default 1e-05

Type real number inside (0, 1)

parameter max_local_warnings
Max number of lost ray warnings to print per domain.

Default 10

Type non-negative integer

parameter mix_tolerance
Tolerance for collapsing similar mixed materials into one.

To reduce memory requirements (see Performance considerations (page 178)), mixed cells with similar
contents are collapsed to a single mixture on the fly [14]. A higher “mix tolerance” will reduce both
memory consumption and accuracy for coarsely discretized problems. “Coarse” is relative to the length
scale of the finest features of the input model.

Warning: Because the mixture collapsing is done locally on each KBA domain and not globally,
different KBA decompositions will result in different discretized Denovo solutions! Since hybrid
applications are relatively insensitive to weight windows (the estimated mean should converge
to the same value), this is generally ok for hybrid mode. However, the on-the-fly discretization
provided by the [DENOVO][RAYTRACE] (page 187) capability might not be appropriate for
standalone solutions. The make-denovo-model (page 21) tool can be used to convert an initial
raytraced Denovo run into a reproducible, more efficient model for comparison between multiple
Denovo runs.

Default 0.05

Type real number inside (0, 1)

parameter rays_deterministic
Use face midpoints rather than stratified sampling.

187

Default False

Type boolean

parameter rays_per_face
Number of ray trace rays to be fired per mesh face.

Default 4

Type positive square integer

parameter void_matid(advanced)
Material ID to be used when raytrace is outside the problem.

Default 0

Type integer

parameter z_loc
The z coordinate for the ray trace.

Type real number

Applicable when Problem is 2-D

3.23.8 [DENOVO][SOURCE]

The [SOURCE] database controls discretization of Shift sources. Source strengths, including the WGT card for
MCNP sources, are taken into account when creating the discrete source.

parameter mc_num_particles
Number of uncollided source particles to sample.

Type positive integer

Applicable when uncflux is mc

parameter mc_uncf_sets
Number of Denovo blocks per uncollided flux decomposition.

Default 1

Type positive integer

Applicable when

• uncflux is mc; and

• ‘Tpetra’ is enabled in this build

preprocessor
Sources must be the same type when using Denovo.

parameter uncflux
parameter uncf

Uncollided flux treatment.

The uncollided flux treatment can reduce ray effects from point sources or other small sources. It
currently applies only to separable sources, mesh problem sources (defined in an HDF5 input file), and
SWORD sources.

188

The default is to treat all sources by discretizing them onto the Denovo grid as SN sources.

If the “analytic” option is chosen, all point sources will be used as analytic uncollided flux sources.
Ray traces are performed through the underlying geometry from each point source to quadrature points
on each Denovo mesh cell to determine the uncollided flux contribution inside that cell.

The “mc” option is only valid when a single source is present. If selected, the source will be converted
into a Monte Carlo uncollided flux source.

Default analytic

Type none, analytic, or mc

Applicable when

• not using an MCNP source; and

• ../decomposition/energy_sets is 1

3.23.9 [DENOVO][OUTPUT]

HDF5 output options.

parameter angular_flux
Write the full angular flux.

Default False

Type boolean

Applicable when /denovo/disable is none or transport and /denovo/method is sn

postprocessor
Flux output is not automatically disabled when transport is disabled.

Applicability /denovo/disable is state or transport

parameter angular_mesh
Write the quadrature angles and weights.

Default True

Type boolean

Applicable when /denovo/disable is none or transport and /denovo/method is sn

parameter block
Write the KBA domain for each cell.

Default True

Type boolean

parameter current
Write the current (first angular moment).

Default False

Type boolean

Applicable when

189

• scattering order is not isotropic (pn_order > 0); and

• transporter state is constructed

deprecated fc_source
Deprecated entry fc_source has been renamed to uncflux.

Update to uncflux

parameter flux
Write the scalar flux.

Default True when performing transport

Type boolean

Applicable when transporter state is constructed

parameter mat
Write materials and mix tables.

Default True when the model type is not ‘mesh’

Type boolean

parameter source
Write the energy-dependent source term.

Default True when performing transport and model is not ‘mesh’

Type boolean

Applicable when problem mode is adjoint, forward, or hybrid

parameter uncflux
Write the uncollided flux if present.

Default True when performing transport

Type boolean

Applicable when

• /denovo/disable is none or transport and /denovo/method is sn; and

• problem mode is adjoint, forward, or hybrid; and

• when uncflux is enabled

3.23.10 [DENOVO][SILO]

Silo output options.

parameter blocks_per_file
Number of KBA blocks written to each SILO output file.

Increasing this number will reduce the number of files in the _silo output directory, and each file
will be correspondingly larger. The number of files can affect the output bandwidth, depending on the
parallel file system being used.

Default 1

190

Type positive integer

parameter current
Write the current (first angular moment).

Default False

Type boolean

Applicable when

• writing output; and

• scattering order is not isotropic (pn_order > 0); and

• transporter state is constructed

deprecated fc_source
Deprecated entry fc_source has been renamed to uncflux.

Update to uncflux

parameter flux
Write the scalar flux.

Default False

Type boolean

Applicable when

• writing output; and

• transporter state is constructed

parameter mat
Write materials.

Default True

Type boolean

parameter mixed_mats(advanced)
Write material volume fractions rather than mixed matids.

Default True

Type boolean

Applicable when mat is True

parameter output
Name of Silo output file (without extension).

Default denovo_output

Type string without special characters

parameter power
Write power to the output Silo file.

Default False

191

Type boolean

Applicable when

• writing output; and

• problem mode is kcode; and

• transporter state is constructed

parameter source
Write the energy-dependent source term.

Default False

Type boolean

Applicable when

• writing output; and

• problem mode is adjoint, forward, or hybrid; and

• transporter state is constructed

parameter uncflux
Write the uncollided flux if present.

Default False

Type boolean

Applicable when

• writing output; and

• /denovo/disable is none or transport and /denovo/method is sn; and

• problem mode is adjoint, forward, or hybrid; and

• transporter state is constructed

3.23.11 [DENOVO][SOLVER]

Table 31: Available types for the [SOLVER] database

Type Description Applicability

fixed (page 194) Fixed-source solver options problem mode is adjoint, forward, or
hybrid

eigenvalue
(page 195)

Solver options for eigenvalue prob-
lems

problem mode is kcode

3.23.12 [DENOVO][BOUNDARY=VACUUM]

Vacuum boundaries.

192

3.23.13 [DENOVO][BOUNDARY=REFLECT]

Reflecting and vacuum boundaries.

parameter reflect
Mark each exterior face of the problem as reflecting.

Default reflecting on all dimensions

Type list of boundary conditions for -X,+X,-Y,+Y,[-Z,+Z] (each element is a integer 0 or
1)

postprocessor
Reflect array length must be compatible with dimension.

3.23.14 [DENOVO][BOUNDARY=ISOTROPIC]

One or more isotropic incident boundaries.

parameter minus_x
Flux for each energy group on the -X boundary surface.

Optional

Type list in which each element is a real number

parameter minus_y
Flux for each energy group on the -Y boundary surface.

Optional

Type list in which each element is a real number

parameter minus_z
Flux for each energy group on the -Z boundary surface.

Optional

Type list in which each element is a real number

parameter plus_x
Flux for each energy group on the +X boundary surface.

Optional

Type list in which each element is a real number

parameter plus_y
Flux for each energy group on the +Y boundary surface.

Optional

Type list in which each element is a real number

parameter plus_z
Flux for each energy group on the +Z boundary surface.

Optional

Type list in which each element is a real number

postprocessor
Check number of groups and for one non-empty surface.

193

3.23.15 [DENOVO][SOLVER=FIXED]

The fixed solver database type specifies the solvers and options to use when solving a forward, adjoint,
or hybrid problem through Denovo. The [DENOVO][SOLVER][WITHIN_GROUP] (page 200) database
controls the solver options for solving within each energy group. The upscatter database controls the
solver options for solving multiple coupled groups; some of the upscatter solution methods additionally have
an inner iteration of within-group solves.

The tolerance parameter sets an overall desired convergence tolerance. The tolerances of any embedded
solvers will be set accordingly to achieve a solution to this given accuracy. (The upscatter and within-group
databases default to the same tolerance as the overall solver.)

parameter tolerance
parameter tol

Convergence tolerance to govern solver accuracy.

The default tolerance in most cases is to converge to a factor of ten tighter than the parent database.
However, in the case of fixed-source problems, the tolerance of the within-group and upscatter databases
is set to the value of the fixed-source solver database (with no additional multiplier). These default
values are always written to the screen as a diagnostic.

Default 0.001

Type real number inside (0, 1)

database [UPSCATTER]
Upscatter block solver options. See [DENOVO][SOLVER][UPSCATTER] (page 198).

Default (empty database)

Applicable when /denovo/disable is none or transport and /denovo/method is
spn; upscattering is enabled; or upscatter_groups is all

parameter upscatter_groups
Which groups to treat as upscatter groups during solve.

This parameter controls which energy groups to treat as upscatter when solving. If set to all, all
energy groups are treated as upscatter during the solve. If set to thermal, only the thermal groups are
treated as upscatter during the solve.

The upscatter_groups parameter has dependencies on other solver options:

• If the method (page 180) is spn, this parameter is not used as SPN always solves simultaneously
over all groups.

• If the eigenvalue solver (page 195) is rayleigh_quotient, which must simultaneously solve
all groups, it must be set to all.

• If use_cuda is True, it must be all. Increasing the amount of simultaneous work by transporting
over all groups at once is critical to performant GPU code.

• If the number of energy set decompositions (page 183) is one, the default is to solve only thermal
groups. Otherwise, increased parallelism is needed and the default changes to all.

Default thermal unless arch is gpu, eigenvalue solver is rayleigh_quotient,
energy_sets > 1,‘‘method‘‘ is spn, or upscatter preconditioner is multilevel

194

Type all or thermal

postprocessor
CUDA sweeper, rayleigh_quotient solver, SPN, and multilevel upscatter preconditioner require
all upscatter groups.

postprocessor
Warn if using downscatter-only physics with upscatter all unless needed.

Applicability upscatter_groups is all

database [WITHIN_GROUP]
One-group transport solver options. See [DENOVO][SOLVER][WITHIN_GROUP] (page 200).

Default (empty database)

Applicable when upscatter_groups is thermal

3.23.16 [DENOVO][SOLVER=EIGENVALUE]

The eigenvalue database specifies the solvers and options to use for solving an eigenvalue problem (mode
kcode) through Denovo. Along with the within-group (page 200) and upscatter (page 198) databases
described below, this database also sets the solver and options for the eigenvalue solve.

The tolerance parameter which controls the l2 convergence tolerance of the eigenvalue solve can be used
to set an overall desired convergence tolerance. Inner iteration tolerances will be set accordingly to achieve a
solution with this accuracy.

The verbosity (page 198) setting determines the output level within the linear algebraic solver.

parameter acceleration_method
Type of power iteration acceleration.

Default none

Type none or rebalance

Applicable when solver is power_iteration

parameter calculate_flux_moments
Calculate the flux moments during Arnoldi iteration.

Default True

Type boolean

Applicable when solver is arnoldi

parameter fission_tolerance
Tolerance for infinity norm of flux.

Default 1.0

Type real number inclusive [0.0, 1.0]

Applicable when solver is power_iteration

parameter k_tolerance
Tolerance for relative error of k-eff eigenvalue.

195

Default 1e-05

Type real number inclusive [0.0, 1.0]

Applicable when solver is power_iteration or rayleigh_quotient

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000

Type non-negative integer

parameter shift
Shift parameter for RQI.

Default -1.0

Type real number

Applicable when solver is rayleigh_quotient

parameter solver
Solver used for eigenvalue iteration.

The Arnoldi solver offers fast, robust convergence for almost all problems. Like the GMRES (General-
ized Minimal RESidual method) linear solver, Arnoldi is a subspace solver and therefore incurs some
extra memory usage. To reduce memory usage, it is possible to use a variation of this solver that turns
off energy dependence, which will reduce the memory used by the solver in exchange for some extra
computational work at the end of the solve.

Power Iteration is a robust eigenvalue solver, but it suffers from extremely slow convergence and long
computational times for many problems. It has minimal memory requirements; however, using the
energy independent Arnoldi solver typically results in only a small extra memory cost and should be
preferred for most problems.

Rayleigh Quotient Iteration (RQI) offers superior performance to Arnoldi for certain very challenging
problems. However, this solver often results in very high memory usage, and the stability is not as
well understood as for Arnoldi and Power Iteration. RQI should be considered experimental and is not
recommended for most users.

The Davidson solver offers extremely fast convergence, but it is currently only available when using the
SPN discretization. Although all of the above solvers are also available with SPN , use of the Davidson
solver is always preferred.

With the exception of the Davidson solver, all eigenvalue solvers require the solution of a fixed-source
sub-problem as part of the iterative solution process. See the multigroup (page 198) and within-group
(page 200) sections for details on the inner loops of the solution process.

Default arnoldi for SN, davidson for SPN

Type power_iteration, arnoldi, rayleigh_quotient, or davidson

postprocessor
Cannot set solver to arnoldi, davidson, or rayleigh_quotient unless ‘equations’ discretization
is linear (not ‘twd’ or ‘wdd_ff’).

196

postprocessor
Cannot set solver to davidson unless /denovo/disable is none or transport and /denovo/
method is spn.

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

L2 convergence tolerance for this solver.

Default 0.001

Type real number inside (0, 1)

parameter tolerance_relax_factor
Inner tolerance relaxation factor for Arnoldi iteration.

Default 1.0

Type real number inclusive [1.0, 10.0]

Applicable when

• solver is arnoldi; and

• tolerance_relaxer is constant

parameter tolerance_relaxer
Type of inner tolerance relaxer for Arnoldi iteration.

Default none

Type none or constant

Applicable when solver is arnoldi

database [UPSCATTER]
Upscatter block solver options. See [DENOVO][SOLVER][UPSCATTER] (page 198).

Default (empty database)

Applicable when /denovo/disable is none or transport and /denovo/method is
spn; upscattering is enabled; or upscatter_groups is all

parameter upscatter_groups
Which groups to treat as upscatter groups during solve.

Default thermal unless arch is gpu, eigenvalue solver is rayleigh_quotient,
energy_sets > 1,‘‘method‘‘ is spn, or upscatter preconditioner is multilevel

Type all or thermal

197

postprocessor
CUDA sweeper, rayleigh_quotient solver, SPN, and multilevel upscatter preconditioner require
all upscatter groups.

postprocessor
Warn if using downscatter-only physics with upscatter all unless needed.

Applicability upscatter_groups is all

parameter use_energy_dependent
Use energy-dependent Arnoldi iteration.

Default True

Type boolean

Applicable when solver is arnoldi

parameter verbosity
Solver verbosity.

Table 32: Denovo solver verbosity options.

Level Description

none Output only warnings from the solver.
low Additionally, output a diagnostic summary of each (typically

within-group) transport solution.
medium Additionally, output information about the convergence tests

(residual, iteration count) for each solve.
high Additionally, output diagnostic information about each

solver iteration.

Default low

Type none, low, medium, or high

database [WITHIN_GROUP]
One-group transport solver options. See [DENOVO][SOLVER][WITHIN_GROUP] (page 201).

Default (empty database)

Applicable when upscatter_groups is thermal

3.23.17 [DENOVO][SOLVER][UPSCATTER]

The parameters and sub-databases in this database control the solve options for the multigroup solve. If
method is spn, this database is required and is used to determine all solve options since the SPN representation
used by Denovo is an explicit multigroup sparse matrix rather than an implicit operator such as SN .

The available multigroup solvers in Denovo are GMRES (the default) and Gauss–Seidel. These solvers are
only used to converge inter-group coupling. When the upscatter (page 194) parameter is set to all, all energy
groups are coupled. For problems that have no upscatter and use the thermal coupling option, this database
is not used. If the upscatter option is set to thermal, the within-group (page 200) solver settings determine
how the high-energy (uncoupled) groups are solved, and this database applies only to the coupled low-energy
groups.

198

Gauss–Seidel, the traditional multigroup iterative solution method, offers the smallest possible memory
footprint of the upscatter solvers at a cost of significantly degraded convergence behavior for many problems.
Gauss–Seidel is essentially an extra level of iteration over the upscattering groups.

The GMRES upscatter convergence option typically offers the most rapid, robust convergence. Its solution
vector comprises the entire upscatter flux. Consequently, since multiple Krylov vectors are necessary for
the method, its memory requirements are higher than Gauss–Seidel. It should also be noted that since the
GMRES option is currently incompatible with other features of Denovo such as adjoint solutions and first-
collision sources. The Omnibus input processor should fail informatively if these incompatible conditions are
requested.

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000, or 3 when SPN + multilevel

Type non-negative integer

database [PRECONDITIONER]
Upscatter preconditioner type. See [DENOVO][SOLVER][UPSCATTER][PRECONDITIONER]
(page 203).

Default (empty none database)

parameter solver
Solver used for the multigroup block solve.

Default ‘gmres’ unless mode is adjoint or a nonlinear spatial discretization is being used

Type gauss_seidel or gmres

postprocessor
Cannot set solver to gmres unless ‘equations’ discretization is linear (not ‘twd’ or ‘wdd_ff’).

postprocessor
Cannot set solver to gmres unless problem mode is forward, hybrid, kcode, or raytrace or
/denovo/disable is none or transport and /denovo/method is spn.

postprocessor
Cannot set solver to gauss_seidel unless CUDA sweeper is disabled.

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

199

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

parameter verbosity
Solver verbosity.

Default low, or none when SPN + multilevel

Type none, low, medium, or high

database [WITHIN_GROUP]
One-group transport solver options. See [DENOVO][SOLVER][UPSCATTER][WITHIN_GROUP]
(page 203).

Default (empty database)

Applicable when solver is gauss_seidel

3.23.18 [DENOVO][SOLVER][WITHIN_GROUP]

The parameters and sub-databases in this database control the solver options for single-group solves embedded
in the multigroup iteration schemes. The available within-group solvers in Denovo are GMRES (the default),
BiCGStab, and source iteration (SI).

GMRES (Generalized Minimal RESidual method) offers fast, robust convergence for most problems. GMRES
is a subspace solver, so multiple vectors must be stored simultaneously which results in additional memory
requirements. Because a downscatter-only problem solves only a single energy group at a time, the extra
memory required is typically small compared to the cost of storing the solution vector over all energy groups.

The performance of BiCGStab (BiConjugate Gradient Stabilized method) is generally similar to that of
GMRES. Memory requirements for BiCGStab are smaller than for GMRES, at a cost of typically slightly
slower convergence leading to longer runtimes. BiCGStab may be suitable for problems where memory
usage must be minimized.

Source iteration offers minimal memory requirements at a cost of significantly worse convergence behavior. It
is only recommended for problems in which memory usage is at an absolute premium; it should be expected
that run times will be significantly longer when using this method.

parameter matrix_output(advanced)
Matrix output file for Krylov solver.

Default A.h5

Type file path to write (extension ‘.h5’)

Applicable when solver is matrixwriter

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000

Type non-negative integer

database [PRECONDITIONER]
Within-group preconditioner type. See [DENOVO][SOLVER][WITHIN_GROUP][PRECONDITIONER]
(page 204).

200

Default (empty none database)

parameter solver
Solver used in each within_group solve.

Default gmres if using a linear discretization, otherwise si

Type gmres, gmres_r, si, bicgstab, stratimikos, or matrixwriter

postprocessor
Cannot set solver to bicgstab, gmres, gmres_r, matrixwriter, or stratimikos unless ‘equa-
tions’ discretization is linear (not ‘twd’ or ‘wdd_ff’).

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

Optional

parameter verbosity
Solver verbosity.

Default low

Type none, low, medium, or high

3.23.19 [DENOVO][SOLVER][WITHIN_GROUP]

One-group transport solver options.

parameter matrix_output(advanced)
Matrix output file for Krylov solver.

Default A.h5

Type file path to write (extension ‘.h5’)

Applicable when solver is matrixwriter

parameter max_iterations

201

parameter maxitr
Max number of iterations for this solver.

Default 1000

Type non-negative integer

database [PRECONDITIONER]
Within-group preconditioner type. See [DENOVO][SOLVER][WITHIN_GROUP][PRECONDITIONER]
(page 204).

Default (empty none database)

parameter solver
Solver used in each within_group solve.

Default gmres if using a linear discretization, otherwise si

Type gmres, gmres_r, si, bicgstab, stratimikos, or matrixwriter

postprocessor
Cannot set solver to bicgstab, gmres, gmres_r, matrixwriter, or stratimikos unless ‘equa-
tions’ discretization is linear (not ‘twd’ or ‘wdd_ff’).

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

Optional

parameter verbosity
Solver verbosity.

Default low

Type none, low, medium, or high

202

3.23.20 . . . [SOLVER][UPSCATTER][PRECONDITIONER]

Table 33: Available types for the [PRECONDITIONER] database

Type Description Applicability

none (page 204) No preconditioner
multilevel
(page 205)

Multilevel preconditioner solver is gmres

twogrid (page 206) Two-grid energy precondi-
tioner

/denovo/disable is none or transport
and /denovo/method is sn and solver is
gauss_seidel

ifpack (page 206) ifpack energy preconditioner /denovo/disable is none or transport and /
denovo/method is spn

ml (page 206) ml energy preconditioner /denovo/disable is none or transport and /
denovo/method is spn

3.23.21 . . . [SOLVER][UPSCATTER][WITHIN_GROUP]

One-group transport solver options.

parameter matrix_output(advanced)
Matrix output file for Krylov solver.

Default A.h5

Type file path to write (extension ‘.h5’)

Applicable when solver is matrixwriter

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000

Type non-negative integer

database [PRECONDITIONER]
Within-group preconditioner type. See [DENOVO][SOLVER][WITHIN_GROUP][PRECONDITIONER]
(page 204).

Default (empty none database)

parameter solver
Solver used in each within_group solve.

Default gmres if using a linear discretization, otherwise si

Type gmres, gmres_r, si, bicgstab, stratimikos, or matrixwriter

postprocessor
Cannot set solver to bicgstab, gmres, gmres_r, matrixwriter, or stratimikos unless ‘equa-
tions’ discretization is linear (not ‘twd’ or ‘wdd_ff’).

parameter subspace_size
Max subspace size for this solver.

203

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

Optional

parameter verbosity
Solver verbosity.

Default low

Type none, low, medium, or high

3.23.22 . . . [SOLVER][WITHIN_GROUP][PRECONDITIONER]

Table 34: Available types for the [PRECONDITIONER] database

Type Description Applicability

none (page 206) No preconditioner

3.23.23 . . . [SOLVER][WITHIN_GROUP][TRILINOS]

Advanced Trilinos solver options.

Note: This database passes its input through exactly as given. If it is defined in an ASCII (.omn) input file,
all embedded parameters will be propagated as strings, which is usually not the desired behavior. Users
should only include this database when the input file is a Python script or JSON file (or alternatively using
the advanced Python interface to modify an ASCII input).

3.23.24 . . . [SOLVER][UPSCATTER][PRECONDITIONER=NONE]

No preconditioner.

204

3.23.25 . . . [SOLVER][UPSCATTER][PRECONDITIONER=MULTILEVEL]

Multilevel preconditioner.

parameter depth_v_cycle
Level of depth.

Default log2(Ng − 1) + 2

Type positive integer

Applicable when /denovo/disable is none or transport and /denovo/method is sn

parameter num_v_cycles
Number of V-cycles.

Default 1

Type positive integer

Applicable when /denovo/disable is none or transport and /denovo/method is sn

database [QUADRATURE]
Discrete ordinates quadrature. See [DENOVO][QUADRATURE] (page 184).

Default (empty database)

Applicable when /denovo/disable is none or transport and /denovo/method is sn

parameter relax_count
Number of rounds of weighted richardson iterations.

Default 1

Type positive integer

Applicable when /denovo/disable is none or transport and /denovo/method is sn

parameter relax_weight
Weight for richardson iteration.

Default 1.0

Type positive real number

Applicable when /denovo/disable is none or transport and /denovo/method is sn

database [SMOOTHER]
Multigrid smoother. See [DENOVO][SOLVER][UPSCATTER][PRECONDITIONER][SMOOTHER]
(page 207).

Optional

Applicable when /denovo/disable is none or transport and /denovo/method is
spn

205

3.23.26 . . . [SOLVER][UPSCATTER][PRECONDITIONER=TWOGRID]

Two-grid energy preconditioner.

database [QUADRATURE]
Discrete ordinates quadrature. See [DENOVO][QUADRATURE] (page 184).

Default (empty database)

Applicable when /denovo/disable is none or transport and /denovo/method is sn

database [WITHIN_GROUP]
One-group transport solver options. See [DENOVO][SOLVER][UPSCATTER][PRECONDITIONER][WITHIN_GROUP]
(page 207).

Default (empty database)

3.23.27 . . . [SOLVER][UPSCATTER][PRECONDITIONER=IFPACK]

ifpack energy preconditioner.

database [QUADRATURE]
Discrete ordinates quadrature. See [DENOVO][QUADRATURE] (page 184).

Default (empty database)

Applicable when /denovo/disable is none or transport and /denovo/method is sn

database [WITHIN_GROUP]
One-group transport solver options. See [DENOVO][SOLVER][UPSCATTER][PRECONDITIONER][WITHIN_GROUP]
(page 209).

Default (empty database)

3.23.28 . . . [SOLVER][UPSCATTER][PRECONDITIONER=ML]

ml energy preconditioner.

database [QUADRATURE]
Discrete ordinates quadrature. See [DENOVO][QUADRATURE] (page 184).

Default (empty database)

Applicable when /denovo/disable is none or transport and /denovo/method is sn

database [WITHIN_GROUP]
One-group transport solver options. See [DENOVO][SOLVER][UPSCATTER][PRECONDITIONER][WITHIN_GROUP]
(page 210).

Default (empty database)

3.23.29 . . . [SOLVER][WITHIN_GROUP][PRECONDITIONER=NONE]

No preconditioner.

206

3.23.30 . . . [UPSCATTER][PRECONDITIONER][SMOOTHER]

Multigrid smoother.

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000

Type non-negative integer

database [PRECONDITIONER]
Smoother preconditioner type. See [DENOVO][SOLVER][UPSCATTER][PRECONDITIONER][SMOOTHER][PRECONDITIONER]
(page 211).

Default (empty none database)

parameter solver
Solver used for smoother solve.

Default gmres

Type gmres, si, bicgstab, or stratimikos

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

parameter verbosity
Solver verbosity.

Default low

Type none, low, medium, or high

3.23.31 . . . [UPSCATTER][PRECONDITIONER][WITHIN_GROUP]

One-group transport solver options.

parameter matrix_output(advanced)
Matrix output file for Krylov solver.

Default A.h5

207

Type file path to write (extension ‘.h5’)

Applicable when solver is matrixwriter

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000

Type non-negative integer

database [PRECONDITIONER]
Within-group preconditioner type. See [DENOVO][SOLVER][WITHIN_GROUP][PRECONDITIONER]
(page 204).

Default (empty none database)

parameter solver
Solver used in each within_group solve.

Default gmres if using a linear discretization, otherwise si

Type gmres, gmres_r, si, bicgstab, stratimikos, or matrixwriter

postprocessor
Cannot set solver to bicgstab, gmres, gmres_r, matrixwriter, or stratimikos unless ‘equa-
tions’ discretization is linear (not ‘twd’ or ‘wdd_ff’).

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

Optional

parameter verbosity
Solver verbosity.

Default low

Type none, low, medium, or high

208

3.23.32 . . . [UPSCATTER][PRECONDITIONER][WITHIN_GROUP]

One-group transport solver options.

parameter matrix_output(advanced)
Matrix output file for Krylov solver.

Default A.h5

Type file path to write (extension ‘.h5’)

Applicable when solver is matrixwriter

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000

Type non-negative integer

database [PRECONDITIONER]
Within-group preconditioner type. See [DENOVO][SOLVER][WITHIN_GROUP][PRECONDITIONER]
(page 204).

Default (empty none database)

parameter solver
Solver used in each within_group solve.

Default gmres if using a linear discretization, otherwise si

Type gmres, gmres_r, si, bicgstab, stratimikos, or matrixwriter

postprocessor
Cannot set solver to bicgstab, gmres, gmres_r, matrixwriter, or stratimikos unless ‘equa-
tions’ discretization is linear (not ‘twd’ or ‘wdd_ff’).

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

209

Optional

parameter verbosity
Solver verbosity.

Default low

Type none, low, medium, or high

3.23.33 . . . [UPSCATTER][PRECONDITIONER][WITHIN_GROUP]

One-group transport solver options.

parameter matrix_output(advanced)
Matrix output file for Krylov solver.

Default A.h5

Type file path to write (extension ‘.h5’)

Applicable when solver is matrixwriter

parameter max_iterations
parameter maxitr

Max number of iterations for this solver.

Default 1000

Type non-negative integer

database [PRECONDITIONER]
Within-group preconditioner type. See [DENOVO][SOLVER][WITHIN_GROUP][PRECONDITIONER]
(page 204).

Default (empty none database)

parameter solver
Solver used in each within_group solve.

Default gmres if using a linear discretization, otherwise si

Type gmres, gmres_r, si, bicgstab, stratimikos, or matrixwriter

postprocessor
Cannot set solver to bicgstab, gmres, gmres_r, matrixwriter, or stratimikos unless ‘equa-
tions’ discretization is linear (not ‘twd’ or ‘wdd_ff’).

parameter subspace_size
Max subspace size for this solver.

Default 20

Type non-negative integer

Applicable when solver is gmres, arnoldi, or davidson

parameter tolerance
parameter tol

Convergence tolerance for this solver.

210

Default typically 0.1 * parent database tolerance

Type real number inside (0, 1)

postprocessor
Tolerance must be less than or equal to tolerance of parent solver database.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

Optional

parameter verbosity
Solver verbosity.

Default low

Type none, low, medium, or high

3.23.34 . . . [PRECONDITIONER][SMOOTHER][PRECONDITIONER]

Table 35: Available types for the [PRECONDITIONER] database

Type Description Applicability

none (page 211) No preconditioner
ifpack
(page 211)

IFPACK algebraic precondi-
tioner

/denovo/disable is none or transport and /
denovo/method is spn

ml (page 211) ML multi-level preconditioner /denovo/disable is none or transport and /
denovo/method is spn

3.23.35 . . . [PRECONDITIONER][SMOOTHER][PRECONDITIONER=NONE]

No preconditioner.

3.23.36 . . . [PRECONDITIONER][SMOOTHER][PRECONDITIONER=IFPACK]

IFPACK algebraic preconditioner.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

Optional

3.23.37 . . . [PRECONDITIONER][SMOOTHER][PRECONDITIONER=ML]

ML multi-level preconditioner.

unvalidated-database [TRILINOS]
Advanced Trilinos solver options. See [DENOVO][SOLVER][WITHIN_GROUP][TRILINOS]
(page 204).

Optional

211

3.24 ORIGEN DEPLETION SOLVER: [DEPLETION]

Omnibus couples Shift and ORIGEN, a depletion/transmutation analysis code, using ORIGEN’s new C++

API and CRAM solver [20]. This new in-memory API avoids the prohibitive cost (on HPC systems) of
writing to disk between transport and depletion steps, and it also enables each depletion step to be performed
on each depletable region in parallel. Shift uses the same approach as the VESTA code to obtain microscopic
per-nuclide reaction rates. This approach tallies ultra-fine-group fluxes in each depletion region and then uses
these fluxes to collapse the microscopic continuous-energy cross sections into one-group reaction rates. Shift
then sends these reaction rates to ORIGEN for a depletion calculation.

In order to optimize the parallel efficiency of the depletion calculation, the depletable regions on each block
are distributed among the available processors, thereby minimizing the number of depletion solves performed
on each core. After every core has calculated the new concentrations for its depletion regions, the results are
broadcast to every other core on the block.

Shift provides several different transport-depletion coupling schemes and renormalization meth-
ods for the burnup calculations, with additional parameters to fine tune the coupling. Only
coupling_method should need to be selected in everyday applications. The other coupling parame-
ters (depletion_method, renormalization_method, predictor_substeps, corrector-substeps,
predictor_renormalization, calculate_depletion_energy, and cram_internal_substeps) get
reasonable defaults, some of which depend on the coupling scheme. Altering them should be considered an
advanced feature.

Note: Depletion is currently supported only when using Shift with continuous energy. Deterministic and
multigroup depletion are not implemented.

parameter always_transport
Always run transport for each timestep, even during decay.

Default True

Type boolean

parameter burn_length
parameter burn

Burnup lengths for each input step.

Units day

Type list of non-negative floats (each element is a non-negative real number)

parameter calculate_depletion_energy
parameter calc_de

Calculate energy released in depletion to get accurate burnups.

Default True

Type boolean

parameter constant_flux_per_step
parameter flux

Constant flux to be applied per burnup step.

Default ---

212

Units n
cm2

Type list of non-negative floats (each element is a non-negative real number)

parameter corrector_substeps
Number of substeps on the corrector.

The corrector_substeps parameter specifies the number of depletion substeps to use on the correc-
tor (if applicable). See predictor_substeps for more details. The default value of this parameter
depends on the depletion solver, coupling scheme, and renormalization.

Default heuristic values based on coupling method and solver

Type positive integer

Applicable when coupling_method is middlestep, ce/li, le/li, le/qi, triton, or
polaris

postprocessor
Cannot set renormalization_method to energy unless calculate_depletion_energy is True.

postprocessor
Cannot set renormalization_method to origen unless coupling_method is fully_explicit,
middlestep, ce, triton, or polaris.

postprocessor
Energy-based renormalization is unreliable with the MATREX depletion solver.

parameter coupling_method
parameter method

Method used to solve the coupled depletion-transport problem.

The coupling_method parameter specifies which method to use for selecting the cross sec-
tions over each depletion step or predicting their behavior over the step (when not assumed con-
stant). The same treatment is used for the spatial distribution of the neutron flux. The behav-
ior of the methods is further controlled by the predictor_substeps, corrector_substeps and
predictor_renormalization parameters. The options (methods) and their descriptions are the
following:

fully_explicit On the predictor, transport is solved at the beginning of step (BOS), and the BOS
cross sections are used for the entire step. No corrector.

middlestep A two-transport-solutions-per-step version of the middlestep method. Predictor uses
BOS cross sections and flux to obtain middle-of-step compositions. Corrector uses MOS cross
sections and flux to deplete for the entire step.

ce A newer implementation of the fully_explicit method.

le On the predictor, transport is solved at BOS and the cross sections are linearly interpolated through
the previous step values and the BOS values. No corrector.

ce/li Predictor works as ce. On the corrector, transport is solved at the end of step (EOS), and the
cross sections are interpolated linearly through the BOS and EOS values.

le/li Predictor works as le. On the corrector, transport is solved at the end of step (EOS), and the
cross sections are interpolated linearly through the BOS and EOS values.

213

le/qi Predictor works as le. On the corrector, transport is solved at the end of step (EOS), and the
cross sections are interpolated quadratically through the previous step, BOS, and EOS values.

triton As middlestep except that after the first step, there is no transport calculation on the predictor.
Instead, the cross sections and flux from the middle of the previous step are used. Note that this
method outputs on a different time grid than the others.

polaris Predictor works as ce. On the corrector, transport is solved at the end of step (EOS), and
the EOS cross sections and flux are used to re-deplete the materials. The average of the EOS
compositions obtained on the predictor and corrector becomes the initial composition for the next
step.

The labels ce, le, li, and qi come from constant extrapolation, linear extrapolation, linear interpo-
lation, and quadratic interpolation, respectively. They stand for the approximation used for the time
development of the cross sections and flux on the predictor or corrector.

The methods le, le/li, and le/qi are more accurate than the rest but also sensitive to large (factor of
35 or more) changes in step lengths. These methods will default to lower-order methods when previous
step data is not available, or is not applicable due to changed normalization. le/li and le/qi are the
most accurate, but if steps need to be short due to desired output, le might be preferable as it takes half
as long per step (but needs more then twice as many steps to reach given accuracy).

Regardless of the choice of coupling_method, pure decay steps with zero flux will always be solved
with ce, as it is the simplest method and still exact in the absence of neutron flux.

Default fully_explicit

Type fully_explicit, middlestep, ce, le, ce/li, le/li, le/qi, triton, or
polaris

parameter cram_internal_substeps
Number of internal substeps in the CRAM depletion solver.

This option is only applied when there are fewer coupling substeps.

The cram_internal_substeps parameter specifies the minimum number of substeps that CRAM
depletion solver should use on each step for depletion accuracy purposes. If this amount is larger than
the number of regular substeps, the CRAM solver uses a feature called internal substeps to meet the
amount specified here.

Internal substeps do not involve different cross sections or renormalization, but they are much faster than
regular substeps. The number of internal substeps to apply on each regular substep is selected so that
the total number of internal substeps over all substeps adds up to at least cram_internal_substeps.

The default value is 2.

Default 2

Type positive integer

Applicable when depletion_solver is cram

parameter cram_order
Order of the CRAM depletion solver.

Default 16

214

Type positive integer

Applicable when depletion_solver is cram

parameter decay_length
parameter decay

Decay lengths for each input step.

Default ---

Units day

Type list of non-negative floats (each element is a non-negative real number)

parameter deplete_cells
parameter cells

Labels of cells to deplete instead of all fissionable cells, or * to indicate all cells.

By default, when depletion is enabled, all “depletable” cells will be tracked and depleted. (Depletable
cells correspond to materials with fissionable materials, or if a [COMP] block is used, materials with
the depletable flag set.) This parameter overrides this default: cells with the listed labels will have their
materials depleted.

Default ---

Type list of cell names (each element is a string)

parameter deplete_nuclides
parameter nuclides

List of nuclides to deplete. All cells containing these nuclides will be depleted. Can be used together
with ‘deplete_cells.’

Default ---

Type list of nuclides in the TRITON nuclide set (each element is a nuclide specifier (e.g.,
U-235, 92235, u235, u-235m1))

parameter depletion_solver
Depletion solver type.

Default cram

Type cram or matrex

parameter group_bounds
Energy bin boundaries for depletion tally.

Default ---

Units eV

Type nonnegative floats in decreasing order (each element is a non-negative real number)

parameter jeff_library
Filepath to an ORIGEN JEFF multigroup file.

Default '/.../origen.rev01.jeff252g'

Type library path

215

parameter kappa_library
Filepath to an HDF5 file containing kappa values.

Optional

Type file path for reading (extension ‘.h5’)

parameter max_burn_substep_size
Maximum substep size for an ORIGEN time step of non-zero power/flux.

Default 40.0

Units day

Type non-negative real number

parameter max_decay_substep_size
Maximum substep size for an ORIGEN time step of zero power/flux.

Default 75.0

Units day

Type non-negative real number

parameter max_step
Maximum time before automatically increasing the number of steps.

Default 400.0

Units day

Type non-negative real number

database [MICRO]
Tally microscopic cross sections. See [DEPLETION][MICRO] (page 223).

Optional

sublist [MOVE]
Time-dependent geometry movement. See [DEPLETION][MOVE] (page 223).

Optional

parameter nuclide_filter_threshold
Threshold at which nuclides below are removed from transport.

Default appropriate filtering threshold for the filter type

Type non-negative real number

Applicable when filtering nuclides

parameter nuclide_filter_type
How to filter nuclides for transport calculations.

Default none

Type none, number_density, absorption, or total

216

parameter num_burn_steps
Number of steps to take for each burn length entry.

The num_burn_steps parameter must have the same length as burn_length and decay_length. It
is the number of constant-flux calculations per entry. Increasing the number will increase the accuracy
of the answer by having better approximations of the depleted concentrations during the transport step,
but it will increase the computational cost because more transport calculations must be performed.

Default ---

Type list in which each element is a non-negative integer

parameter num_decay_steps
Number of steps to take for each decay length entry.

Default ---

Type list in which each element is a non-negative integer

parameter origen_library
Filepath to an ORIGEN library file.

Default '/.../pwr.rev03.orglib'

Type library path

parameter power
Constant power to be applied per burnup step.

Default ---

Units MW

Type list of non-negative floats (each element is a non-negative real number)

postprocessor
The parameters burn_length, decay_length, power, num_burn_steps, and num_decay_steps
must have the same length. Empty lists are ignored.

parameter predictor_renormalization
Perform renormalization on the predictor.

Default true only if using Polaris coupling

Type boolean

Applicable when coupling_method is middlestep, ce/li, le/li, le/qi, triton, or
polaris

parameter predictor_substeps
Number of substeps on the predictor.

The predictor_substeps parameter specifies the number of depletion substeps to use on the predic-
tor. Substeps are always equidistant except for long zero- flux steps with MATREX, in which case
each substep will be thrice as long as the previous.

Substeps serve two roles:

1. The depletion for each substep uses cross sections and flux averaged over that substeps from the
prediction made in the coupling scheme.

217

2. The neutron flux is renormalized at each substep using the compositions, cross sections, and
flux/power distribution for that substep.

In addition, the number of substeps affects the depletion solver’s accuracy. The MATREX depletion
solver requires a sufficient number of substeps that are not too long. The number of substeps is
automatically incremented on a step-by-step basis to meet these requirements. Decay steps with the
CRAM solver always use one only substep. See the parameter cram_internal_substeps.

The default value of this parameter depends on the depletion solver, coupling scheme, and renormaliza-
tion.

Default heuristic values based on coupling method and solver

Type positive integer

parameter print_filtering
Print statistics about nuclide filtering.

Default False

Type boolean

parameter renormalization_method
How to renormalize the flux at each substep.

Which renormalization method (if any) to use on each substep of depletion calculations. The following
options are available:

none No renormalization is performed.

boss Beginning-of-substep cross sections and compositions are used for the renormalization. This
method is inaccurate and should not be used.

moss Middle-of-substep cross sections and compositions are used for the renormalization.

energy Renormalization is based on the energy released during depletion. This method is very
accurate with CRAM, although the difference to moss has no practical significance if substeps
are used. There is no proof that this would always be accurate with MATREX.

origen ORIGEN-style renormalization where power distribution is assumed to remain constant
through the step.

The default is energy if using CRAM and moss if using MATREX or if
calculate_depletion_energy is false.

Default energy if allowable, else moss

Type none, boss, moss, energy, or origen

parameter reset_inactive_cycles
Number of inactive cycles to run for all transport calculations except the initial calculation.

Default -1

Type integer

parameter tracking_nuclides
Nuclides that will be tracked for depletion.

218

Default ---

Type list of nuclides in the TRITON nuclide set (each element is a nuclide specifier (e.g.,
U-235, 92235, u235, u-235m1))

command tracking_set
append a set of TRITON nuclides to tracking_nuclides.

The tracking_set command exposes the TRITON addnux option to the user.

tracking_set none adds no extra nuclides to track (the default).

tracking_set addnux1 corresponds to addnux=1 and adds:

U-234, U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241,
Am-242, Am-243, Cm-242, Cm-243

tracking_set addnux-2 corresponds to addnux=-2 and adds the above nuclides as well as:

H-1, B-10, B-11, N-14, O-16, Kr-83, Zr-94, Nb-93, Mo-95, Tc-99, Ru-106, Rh-103, Rh-105,
Ag-109, Sn-126, I-135, Xe-131, Xe-135, Cs-133, Cs-134, Cs-135, Cs-137, Ce-144, Pr-143,
Nd-143, Nd-145, Nd-146, Nd-147, Nd-148, Pm-147, Pm-148, Pm-149, Sm-147, Sm-149,
Sm-150, Sm-151, Sm-152, Eu-151, Eu-153, Eu-154, Eu-155, Gd-152, Gd-154, Gd-155,
Gd-156, Gd-157, Gd-158, Gd-160, Cm-244

tracking_set addnux2 corresponds to addnux=2 and adds the above nuclides as well as:

Zr-91, Zr-93, Zr-95, Zr-96, Nb-95, Mo-97, Mo-98, Mo-99, Mo-100, Ru-101, Ru-102,
Ru-103, Ru-104, Pd-105, Pd-107, Pd-108, Cd-113, In-115, I-127, I-129, Xe-133, Ba-140,
La-139, Ce-141, Ce-142, Ce-143, Pr-141, Nd-144, Sm-153, Eu-156

tracking_set addnux3 corresponds to addnux=3 and adds the above nuclides as well as:

Ge-72, Ge-73, Ge-74, Ge-76, As-75, Se-76, Se-77, Se-78, Se-80, Se-82, Br-79, Br-81,
Kr-80, Kr-82, Kr-84, Kr-85, Kr-86, Rb-85, Rb-86, Rb-87, Sr-84, Sr-86, Sr-87, Sr-88, Sr-89,
Sr-90, Y-89, Y-90, Y-91, Zr-90, Zr-92, Nb-94, Mo-92, Mo-94, Mo-96, Ru-96, Ru-98, Ru-99,
Ru-100, Ru-105, Pd-102, Pd-104, Pd-106, Pd-110, Ag-107, Ag-111, Cd-106, Cd-108,
Cd-110, Cd-111, Cd-112, Cd-114, Cd-115m, Cd-116, In-113, Sn-112, Sn-114, Sn-115,
Sn-116, Sn-117, Sn-118, Sn-119, Sn-120, Sn-122, Sn-123, Sn-124, Sn-125, Sb-121, Sb-
123, Sb-124, Sb-125, Sb-126, Te-120, Te-122, Te-123, Te-124, Te-125, Te-126, Te-127m,
Te-128, Te-129m, Te-130, Te-132, I-130, I-131, Xe-124, Xe-126, Xe-128, Xe-129, Xe-130,
Xe-132, Xe-134, Xe-136, Cs-136, Ba-134, Ba-135, Ba-136, Ba-137, Ba-138, La-140, Ce-
140, Pr-142, Nd-142, Nd-150, Pm-151, Sm-144, Sm-148, Sm-154, Eu-152, Eu-157, Tb-159,
Tb-160, Dy-160, Dy-161, Dy-162, Dy-163, Dy-164, Ho-165, Er-166, Er-167, Lu-175,
Lu-176, Ta-181, W-182, W-183, W-184, W-186, Re-185, Re-187, Au-197, Th-230, Th-232,
Pa-231, Pa-233, U-232, U-233

tracking_set addnux4 corresponds to addnux=4 and adds the above nuclides as well as:

H-2, H-3, He-3, He-4, Li-6, Li-7, Be-7, Be-9, N-15, O-17, F-19, Na-23, Mg-24, Mg-25,
Mg-26, Al-27, Si-28, Si-29, Si-30, P-31, S-32, S-33, S-34, S-36, Cl-35, Cl-37, Ar-36, Ar-38,
Ar-40, Ka-39, Ka-40, Ka-41, Ca-40, Ca-42, Ca-43, Ca-44, Ca-46, Ca-48, Sc-45, Ti-46,
Ti-47, Ti-48, Ti-49, Ti-50, Cr-50, Cr-52, Cr-53, Cr-54, Mn-55, Fe-54, Fe-56, Fe-57, Fe-58,
Co-58m, Co-58, Co-59, Ni-58, Ni-59, Ni-60, Ni-61, Ni-62, Ni-64, Cu-63, Cu-65, Ga-69,
Ga-71, Ge-70, As-74, Se-74, Se-79, Kr-78, Ag-110m, Sn-113, Xe-123, Ba-130, Ba-132,

219

Ba-133, La-138, Ce-136, Ce-138, Ce-139, Pm-148m, Gd-153, Dy-156, Dy-158, Ho-166m,
Er-162, Er-164, Er-168, Er-170, Hf-174, Hf-176, Hf-177, Hf-178, Hf-179, Hf-180, Ta-182,
Ir-191, Ir-193, Hg-196, Hg-198, Hg-199, Hg-200, Hg-201, Hg-202, Hg-204, Pb-204, Pb-
206, Pb-207, Pb-208, Bi-209, Ra-223, Ra-224, Ra-225, Ra-226, Ac-225, Ac-226, Ac-227,
Th-227, Th-228, Th-229, Th-233, Th-234, Pa-232, U-237, U-239, U-240, U-241, Np-235,
Np-236, Np-238, Np-239, Pu-236, Pu-237, Pu-243, Pu-244, Pu-246, Am-242m, Am-244,
Am-244m, Cm-241, Cm-245, Cm-246, Cm-247, Cm-248, Cm-249, Cm-250, Bk-249,
Bk-250, Cf-249, Cf-250, Cf-251, Cf-252, Cf-253, Cf-254, Es-253, Es-254, Es-255

tracking_set all contains all the nuclides available in ORIGEN, which are the above nuclides as
well as:

H-4, He-5, He-6, He-8, Li-8, Li-9, Be-8, Be-10, Be-11, Be-12, B-12, C-0, C-12, N-13,
N-16, O-18, O-19, F-20, Ne-20, Ne-21, Ne-22, Ne-23, Na-22, Na-24, Na-24m, Na-25,
Mg-27, Mg-28, Al-26, Al-28, Al-29, Al-30, Si-31, Si-32, P-32, P-33, P-34, S-25, S-35,
S-37, Cl-36, Cl-38, Cl-38m, Ar-37, Ar-39, Ar-41, Ar-42, Ka-42, Ka-43, Ka-44, Ca-41,
Ca-45, Ca-47, Ca-49, Sc-44, Sc-44m, Sc-45m, Sc-46, Sc-46m, Sc-47, Sc-48, Sc-49, Sc-50,
Ti-44, Ti-45, Ti-51, V-48, V-49, V-50, V-51, V-52, V-53, V-54, Cr-48, Cr-49, Cr-51, Cr-55,
Cr-66, Cr-67, Mn-52, Mn-53, Mn-54, Mn-56, Mn-57, Mn-58, Mn-66, Mn-67, Mn-68,
Mn-69, Fe-55, Fe-59, Fe-60, Fe-65, Fe-66, Fe-67, Fe-68, Fe-69, Fe-70, Fe-71, Fe-72,
Co-55, Co-56, Co-57, Co-60, Co-60m, Co-61, Co-62, Co-65, Co-66, Co-67, Co-68, Co-69,
Co-70, Co-71, Co-72, Co-73, Co-74, Co-75, Ni-56, Ni-57, Ni-63, Ni-65, Ni-66, Ni-67,
Ni-68, Ni-69, Ni-70, Ni-71, Ni-72, Ni-73, Ni-74, Ni-75, Ni-76, Ni-77, Ni-78, Cu-62, Cu-64,
Cu-66, Cu-67, Cu-68, Cu-68m, Cu-69, Cu-70, Cu-70m, Cu-71, Cu-72, Cu-73, Cu-74,
Cu-75, Cu-76, Cu-77, Cu-78, Cu-79, Cu-80, Cu-81, Zn-63, Zn-64, Zn-65, Zn-66, Zn-67,
Zn-68, Zn-69, Zn-69m, Zn-70, Zn-71, Zn-71m, Zn-72, Zn-73, Zn-74, Zn-75, Zn-76, Zn-77,
Zn-78, Zn-79, Zn-80, Zn-81, Zn-82, Zn-83, Ga-66, Ga-67, Ga-68, Ga-70, Ga-72, Ga-72m,
Ga-73, Ga-74, Ga-74m, Ga-75, Ga-76, Ga-77, Ga-78, Ga-79, Ga-80, Ga-81, Ga-82, Ga-83,
Ga-84, Ga-85, Ga-86, Ge-66, Ge-67, Ge-68, Ge-69, Ge-71, Ge-71m, Ge-73m, Ge-75,
Ge-75m, Ge-77, Ge-77m, Ge-78, Ge-79, Ge-79m, Ge-80, Ge-81m, Ge-81, Ge-82, Ge-83,
Ge-84, Ge-85, Ge-86, Ge-87, Ge-88, Ge-89, As-69, As-71, As-72, As-73, As-75m, As-
76, As-77, As-78, As-79, As-80, As-81, As-82, As-82m, As-83, As-84, As-84m, As-85,
As-86, As-87, As-88, As-89, As-90, As-91, As-92, Se-72, Se-73, Se-73m, Se-75, Se-77m,
Se-79m, Se-81, Se-81m, Se-83m, Se-83, Se-84, Se-85, Se-86, Se-87, Se-88, Se-89, Se-90,
Se-91, Se-92, Se-93, Se-94, Br-75, Br-76, Br-77, Br-77m, Br-78, Br-79m, Br-80, Br-80m,
Br-82, Br-82m, Br-83, Br-84, Br-84m, Br-85, Br-86, Br-87, Br-88, Br-89, Br-90, Br-91,
Br-92, Br-93, Br-94, Br-95, Br-96, Br-97, Kr-76, Kr-77, Kr-79m, Kr-79, Kr-81, Kr-81m,
Kr-83m, Kr-85m, Kr-87, Kr-88, Kr-89, Kr-90, Kr-91, Kr-92, Kr-93, Kr-94, Kr-95, Kr-96,
Kr-97, Kr-98, Kr-99, Kr-100, Rb-79, Rb-81, Rb-82, Rb-83, Rb-84, Rb-86m, Rb-88, Rb-
89, Rb-90, Rb-90m, Rb-91, Rb-92, Rb-93, Rb-94, Rb-95, Rb-96, Rb-97, Rb-98, Rb-99,
Rb-100, Rb-101, Rb-102, Sr-82, Sr-83, Sr-85, Sr-85m, Sr-87m, Sr-91, Sr-92, Sr-93, Sr-94,
Sr-95, Sr-96, Sr-97, Sr-98, Sr-99, Sr-100, Sr-101, Sr-102, Sr-103, Sr-104, Sr-105, Y-85,
Y-86, Y-87, Y-87m, Y-88, Y-89m, Y-90m, Y-91m, Y-92, Y-93, Y-93m, Y-94, Y-95, Y-96,
Y-96m, Y-97, Y-97m, Y-98, Y-98m, Y-99, Y-100, Y-101, Y-102, Y-103, Y-104, Y-105,
Y-106, Y-107, Y-108, Zr-86, Zr-87, Zr-88, Zr-89, Zr-89m, Zr-90m, Zr-97, Zr-98, Zr-99,
Zr-100, Zr-101, Zr-102, Zr-103, Zr-104, Zr-105, Zr-106, Zr-107, Zr-108, Zr-109, Zr-110,
Nb-89, Nb-90, Nb-91, Nb-91m, Nb-92, Nb-92m, Nb-93m, Nb-94m, Nb-95m, Nb-96,
Nb-97, Nb-97m, Nb-98, Nb-98m, Nb-99, Nb-99m, Nb-100, Nb-100m, Nb-101, Nb-102,
Nb-102m, Nb-103, Nb-104, Nb-104m, Nb-105, Nb-106, Nb-107, Nb-108, Nb-109, Nb-110,

220

Nb-111, Nb-112, Nb-113, Mo-90, Mo-91, Mo-93, Mo-93m, Mo-101, Mo-102, Mo-103,
Mo-104, Mo-105, Mo-106, Mo-107, Mo-108, Mo-109, Mo-110, Mo-111, Mo-112, Mo-113,
Mo-114, Mo-115, Tc-93, Tc-95, Tc-95m, Tc-96, Tc-97, Tc-97m, Tc-98, Tc-99m, Tc-100,
Tc-101, Tc-102, Tc-102m, Tc-103, Tc-104, Tc-105, Tc-106, Tc-107, Tc-108, Tc-109,
Tc-110, Tc-111, Tc-112, Tc-113, Tc-114, Tc-115, Tc-116, Tc-117, Tc-118, Ru-95, Ru-97,
Ru-107, Ru-108, Ru-109, Ru-109m, Ru-110, Ru-111, Ru-112, Ru-113, Ru-114, Ru-115,
Ru-116, Ru-117, Ru-118, Ru-119, Ru-120, Rh-99, Rh-99m, Rh-100, Rh-101, Rh-101m,
Rh-102, Rh-102m, Rh-103m, Rh-104, Rh-104m, Rh-105m, Rh-106, Rh-106m, Rh-107,
Rh-108, Rh-108m, Rh-109, Rh-109m, Rh-110, Rh-110m, Rh-111, Rh-112, Rh-113, Rh-
114, Rh-115, Rh-116, Rh-117, Rh-118, Rh-119, Rh-120, Rh-121, Rh-122, Rh-123, Pd-99,
Pd-100, Pd-101, Pd-103, Pd-107m, Pd-109, Pd-109m, Pd-111, Pd-111m, Pd-112, Pd-113,
Pd-114, Pd-115, Pd-116, Pd-117, Pd-118, Pd-119, Pd-120, Pd-121, Pd-122, Pd-123, Pd-
124, Pd-125, Pd-126, Ag-103, Ag-105, Ag-105m, Ag-106, Ag-106m, Ag-107m, Ag-108,
Ag-108m, Ag-109m, Ag-110, Ag-111m, Ag-112, Ag-113, Ag-113m, Ag-114, Ag-115,
Ag-115m, Ag-116, Ag-116m, Ag-117, Ag-117m, Ag-118, Ag-118m, Ag-119, Ag-120,
Ag-120m, Ag-121, Ag-122, Ag-122m, Ag-123, Ag-124, Ag-125, Ag-126, Ag-127, Ag-128,
Ag-129, Ag-130, Cd-105, Cd-107, Cd-109, Cd-111m, Cd-113m, Cd-115, Cd-117, Cd-
117m, Cd-118, Cd-119, Cd-119m, Cd-120, Cd-121, Cd-121m, Cd-122, Cd-123, Cd-123m,
Cd-124, Cd-125, Cd-126, Cd-127, Cd-128, Cd-129, Cd-130, Cd-131, Cd-132, In-107,
In-109, In-111m, In-111, In-112, In-112m, In-113m, In-114m, In-114, In-115m, In-116m,
In-116, In-117m, In-117, In-118m, In-118, In-119m, In-119, In-120m, In-120, In-121m,
In-121, In-122m, In-122, In-123m, In-123, In-124m, In-124, In-125m, In-125, In-126m,
In-126, In-127m, In-127, In-128m, In-128, In-129m, In-129, In-130m, In-130, In-131m,
In-131, In-132, In-133, In-134, In-135, Sn-111, Sn-113m, Sn-117m, Sn-119m, Sn-121,
Sn-121m, Sn-123m, Sn-125m, Sn-127, Sn-127m, Sn-128, Sn-128m, Sn-129, Sn-129m,
Sn-130, Sn-130m, Sn-131, Sn-131m, Sn-132, Sn-133, Sn-134, Sn-135, Sn-136, Sn-137,
Sb-113, Sb-115m, Sb-115, Sb-117, Sb-118m, Sb-118, Sb-119, Sb-120m, Sb-120, Sb-122m,
Sb-122, Sb-124m, Sb-126m, Sb-127, Sb-128m, Sb-128, Sb-129, Sb-130m, Sb-130, Sb-131,
Sb-132m, Sb-132, Sb-133, Sb-134m, Sb-134, Sb-135, Sb-136, Sb-137, Sb-138, Sb-139,
Te-115, Te-117, Te-118, Te-119m, Te-119, Te-121, Te-121m, Te-123m, Te-125m, Te-127,
Te-129, Te-131, Te-131m, Te-133, Te-133m, Te-134, Te-135, Te-136, Te-137, Te-138,
Te-139, Te-140, Te-141, Te-142, I-121, I-122, I-123, I-124, I-125, I-126, I-128, I-130m,
I-132, I-132m, I-133, I-133m, I-134m, I-134, I-136m, I-136, I-137, I-138, I-139, I-140,
I-141, I-142, I-143, I-144, I-145, Xe-122, Xe-125, Xe-125m, Xe-127m, Xe-127, Xe-129m,
Xe-131m, Xe-133m, Xe-134m, Xe-135m, Xe-137, Xe-138, Xe-139, Xe-140, Xe-141, Xe-
142, Xe-143, Xe-144, Xe-145, Xe-145m, Xe-146, Xe-147, Cs-127, Cs-128, Cs-129, Cs-130,
Cs-131, Cs-132, Cs-134m, Cs-135m, Cs-136m, Cs-138m, Cs-138, Cs-139, Cs-140, Cs-141,
Cs-142, Cs-143, Cs-144, Cs-145, Cs-146, Cs-147, Cs-148, Cs-149, Cs-150, Cs-151, Ba-128,
Ba-129, Ba-131, Ba-131m, Ba-133m, Ba-135m, Ba-136m, Ba-137m, Ba-139, Ba-141, Ba-
142, Ba-143, Ba-144, Ba-145, Ba-146, Ba-147, Ba-148, Ba-149, Ba-150, Ba-151, Ba-152,
Ba-153, La-133, La-134, La-135, La-136, La-137, La-141, La-142, La-143, La-144, La-
145, La-146m, La-146, La-147, La-148, La-149, La-150, La-151, La-152, La-153, La-154,
La-155, Ce-134, Ce-135, Ce-137m, Ce-137, Ce-139m, Ce-145, Ce-146, Ce-147, Ce-148,
Ce-149, Ce-150, Ce-151, Ce-152, Ce-153, Ce-154, Ce-155, Ce-156, Ce-157, Pr-139, Pr-
140, Pr-142m, Pr-144m, Pr-144, Pr-145, Pr-146, Pr-147, Pr-148m, Pr-148, Pr-149, Pr-150,
Pr-151, Pr-152, Pr-153, Pr-154, Pr-155, Pr-156, Pr-157, Pr-158, Pr-159, Nd-140, Nd-141,
Nd-149, Nd-151, Nd-152, Nd-153, Nd-154, Nd-155, Nd-156, Nd-157, Nd-158, Nd-159,
Nd-160, Nd-161, Pm-141, Pm-143, Pm-144, Pm-145, Pm-146, Pm-150, Pm-152m, Pm-152,

221

Pm-153, Pm-154m, Pm-154, Pm-155, Pm-156, Pm-157, Pm-158, Pm-159, Pm-160, Pm-
161, Pm-162, Pm-163, Sm-143, Sm-143m, Sm-145, Sm-146, Sm-155, Sm-156, Sm-157,
Sm-158, Sm-159, Sm-160, Sm-161, Sm-162, Sm-163, Sm-164, Sm-165, Eu-145, Eu-146,
Eu-147, Eu-148, Eu-149, Eu-150m, Eu-150, Eu-152m, Eu-154m, Eu-158, Eu-159, Eu-160,
Eu-161, Eu-162, Eu-163, Eu-164, Eu-165, Eu-166, Eu-167, Gd-146, Gd-147, Gd-148,
Gd-149, Gd-150, Gd-151, Gd-153m, Gd-155m, Gd-159, Gd-161, Gd-162, Gd-163, Gd-164,
Gd-165, Gd-166, Gd-167, Gd-168, Gd-169, Tb-151, Tb-152, Tb-153, Tb-154m, Tb-154,
Tb-155, Tb-156m, Tb-156, Tb-157, Tb-158m, Tb-158, Tb-161, Tb-162, Tb-163, Tb-164,
Tb-165, Tb-166, Tb-167, Tb-168, Tb-169, Tb-170, Tb-171, Dy-154, Dy-155, Dy-157,
Dy-159, Dy-165, Dy-165m, Dy-166, Dy-167, Dy-168, Dy-169, Dy-170, Dy-171, Dy-172,
Ho-159m, Ho-159, Ho-160m, Ho-160, Ho-161m, Ho-161, Ho-162m, Ho-162, Ho-163m,
Ho-163, Ho-164m, Ho-164, Ho-166, Ho-167, Ho-168, Ho-169, Ho-170m, Ho-170, Ho-171,
Ho-172, Er-160, Er-161, Er-163, Er-165, Er-167m, Er-169, Er-171, Er-172, Tm-165, Tm-
166, Tm-167, Tm-168, Tm-169, Tm-170m, Tm-170, Tm-171, Tm-172, Tm-173, Yb-166,
Yb-167, Yb-168, Yb-169m, Yb-169, Yb-170, Yb-171, Yb-172, Yb-173, Yb-174, Yb-175m,
Yb-175, Yb-176, Yb-177, Lu-169m, Lu-169, Lu-170, Lu-171m, Lu-171, Lu-172m, Lu-172,
Lu-173, Lu-174m, Lu-174, Lu-176m, Lu-177m, Lu-177, Hf-170, Hf-171, Hf-172, Hf-173,
Hf-175, Hf-178m, Hf-179m, Hf-180m, Hf-181, Hf-182, Ta-177, Ta-178, Ta-179, Ta-180m,
Ta-180, Ta-182m, Ta-183, W-178, W-180, W-181, W-183m, W-185, W-185m, W-187,
W-188, W-189, Re-181, Re-182, Re-182m, Re-183, Re-184, Re-184m, Re-186, Re-186m,
Re-188, Re-188m, Re-189, Os-182, Os-183, Os-184, Os-185, Os-186, Os-187, Os-188,
Os-189, Os-189m, Os-190, Os-190m, Os-191, Os-191m, Os-192, Os-193, Os-194, Ir-185,
Ir-186, Ir-188, Ir-189, Ir-189m, Ir-190, Ir-191m, Ir-192, Ir-192m, Ir-193m, Ir-194, Ir-194m,
Ir-196, Ir-196m, Pt-188, Pt-189, Pt-190, Pt-191, Pt-192, Pt-193, Pt-193m, Pt-194, Pt-195,
Pt-195m, Pt-196, Pt-197, Pt-197m, Pt-198, Pt-199, Pt-199m, Pt-200, Au-193, Au-194,
Au-195, Au-195m, Au-196, Au-198, Au-198m, Au-199, Au-199m, Au-200, Au-200m,
Hg-193m, Hg-193, Hg-194, Hg-195m, Hg-195, Hg-197, Hg-197m, Hg-199m, Hg-203,
Hg-205, Hg-206, Tl-200, Tl-201, Tl-202, Tl-203, Tl-204, Tl-205, Tl-206, Tl-207, Tl-208,
Tl-209, Tl-210, Pb-200, Pb-202, Pb-203, Pb-205, Pb-205m, Pb-207m, Pb-209, Pb-210,
Pb-211, Pb-212, Pb-214, Bi-205, Bi-206, Bi-207, Bi-208, Bi-210, Bi-210m, Bi-211, Bi-212,
Bi-212m, Bi-213, Bi-214, Po-206, Po-207, Po-208, Po-209, Po-210, Po-211, Po-211m,
Po-212, Po-213, Po-214, Po-215, Po-216, Po-218, At-216, At-217, At-218, Rn-216, Rn-217,
Rn-218, Rn-219, Rn-220, Rn-222, Fr-220, Fr-221, Fr-222, Fr-223, Ra-220, Ra-222, Ra-227,
Ra-228, Ac-224, Ac-228, Th-226, Th-231, Pa-228, Pa-229, Pa-230, Pa-234, Pa-234m,
Pa-235, U-230, U-231, Np-234, Np-236m, Np-240, Np-240m, Np-241, Pu-237m, Pu-245,
Pu-247, Am-239, Am-240, Am-245, Am-246, Am-247, Cm-240, Cm-251, Bk-245, Bk-246,
Bk-247, Bk-248, Bk-248m, Bk-251, Cf-246, Cf-248, Cf-255, Es-251, Es-252, Es-254m

These tables are available in the SCALE 6.1 manual.

Creates tracking_nuclides

parameter write_mixtables(advanced)
Write the transport mixtables.

Default False

Type boolean

parameter write_predictor_data
parameter write_p

Write predictor data.

222

Default False

Type boolean

Applicable when coupling_method is middlestep, ce/li, le/li, le/qi, triton, or
polaris

parameter write_xs
Write the collapsed origen XS.

Default False

Type boolean

parameter yield_library
Filepath to an ORIGEN fission yields library file.

Default '/.../origen.rev05.yields.data'

Type library path

3.24.1 [DEPLETION][MOVE]

Time-dependent geometry movement.

parameter delta
Distance to move surfaces at the beginning of each step.

Type list in which each element is a real number

postprocessor
Number of movement steps should match depletion steps.

parameter name
Name of the surface group.

Type string without special characters

postprocessor
Move name must correspond to a movable geometry name.

3.24.2 [DEPLETION][MICRO]

This creates a “micro” tally to calculate reaction rates for depletion and calculates the material-averaged,
flux-weighted cross sections for multiple materials, nuclides, and reactions. The user specifies a list of
materials to tally, as well as a list of nuclide/reaction pairs.

The multibinning method is used to calculate any additional rates which are not specified in this tally.

Note: Micro tallies can currently only calculate reaction rates for nuclides that are present in the material.

parameter materials
parameter mats

Materials in which to tally.

Type list in which each element is a non-empty string

223

parameter micro_mt
ENDF reactions for microscopic cross section tallying.

Type list in which each element is a MT number or name (e.g., N_GAMMA, 102)

postprocessor
The parameters micro_mt_zaid and micro_mt must have the same length.

parameter micro_mt_zaid
Nuclide IDs for microscopic cross section tallying.

Type list in which each element is a nuclide specifier (e.g., U-235, 92235, u235, u-235m1)

3.25 HYBRID METHODOLOGY: [HYBRID]

In computational nuclear engineering, the term “hybrid” describes methods that couple two different classes
of approximate methods to obtain a more accurate or faster solution. The primary hybrid method in Exnihilo
is to use an approximate Denovo deterministic adjoint solution to generate an important map that reduces the
variance of a Shift Monte Carlo calculation using weight windows.

Table 36: Available types for the [HYBRID] database

Type Description Applicability

cadis (page 224) CADIS hybrid method solver is ‘denovo’
fwcadis (page 224) FW-CADIS hybrid method solver is ‘denovo’
ww (page 226) Manually input weight windows Shift is enabled and Denovo is not

3.25.1 [HYBRID=CADIS]

Consistent Adjoint Driven Importance Sampling (CADIS) goes beyond the use of weight windows by also
applying source biasing. Full details on the theory of this method can be found in [16]. This variance
reduction technique is useful when considering local quantities of interest.

In Shift, a Denovo adjoint calculation is first performed to generate the adjoint flux. This adjoint flux is used
to automatically generate weight windows and also to consistently bias the source used in the subsequent
Shift fixed source calculation. See Shift Omnibus hybrid cadis input section (page 224) for specific input
options available when running CADIS with Shift. Also see the Denovo Omnibus input section (page 176)
for the input options for Denovo adjoint calculations.

parameter tallies
Tallies to optimize.

Type list in which each element is a string

postprocessor
Validate tally names against [TALLY] blocks.

3.25.2 [HYBRID=FWCADIS]

Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW–CADIS) takes the CADIS method
a step further by weighting the adjoint source by the inverse of the forward flux. Full details on the theory of
this method can be found in [17]. This variance reduction technique is useful for reducing variance of global
quantities of interest.

224

In Shift, first, a Denovo forward calculation is performed to optimize a response. The forward flux solution
is used to determine the adjoint source for the following Denovo adjoint calculation. The procedure then
follows the same as that used for CADIS. The adjoint source can be built to optimize for both energy-binned
and energy-integrated responses using the energy_treatment (page 225) parameter. Furthermore, two types
of weightings are applied: global and pathlength, as determined by the tally_weighting (page 226)
parameter. The adjoint source construction for each weighting and energy treatment is as follows:

global weighting, integrated energy treatment

q†(r, E) =
g(r)σd(E)∫︀

E σd(E)φ(r, E) dE

global weighting, binned energy treatment

q†(r, E) =
g(r)
φ(r, E)

pathlength weighting, integrated energy treatment

q†(r, E) =
g(r)σd(E)∫︀

E σd(E)
∫︀

V φ(r, E) dVdE

pathlength weighting, binned energy treatment

q†(r, E) =
g(r)∫︀

V φ(r, E) dV

In the pathlength weightings, the volume integrals are over the cell tally volume (in the case of cell tallies)
or over each tally mesh cell volume (for mesh tallies). Also, g(r) is the volume fraction of a Denovo mesh
cell subtended by the tally region. Thus, Denovo cells that are completely enclosed by V have g = 1, whereas
cells completely outside the tally region have g = 0. For flux tally optimization (see multipliers (page 225)),
the detector response is σd = 1.

See Shift Omnibus hybrid cadis input section (page 224) for specific input options that are available when
running FW–CADIS with Shift along with the input options for Denovo adjoint and forward calculations in
the Denovo Omnibus input section (page 176).

parameter energy_treatment
Optimize for energy-integrated or -binned responses.

Default integrated

Type integrated or binned

parameter multipliers
Multipliers to optimize for each tally.

Default Flux for each tally

Type list in which each element is a string

postprocessor
Validate tally multipliers.

225

parameter tallies
Tallies to optimize.

If a cell tally is specified, each cell union will be treated as a separate tally to optimize.

Type list in which each element is a string

postprocessor
Validate tally names against [TALLY] blocks.

parameter tally_weighting
parameter weighting

Flux weighting to use for each tally.

The tally weighting can be specified as default, global, or pathlength. The default option is
replaced by global for mesh tallies and by pathlength for cell tallies.

Default Default flux weighting for each tally

Type list in which each element is a default, global, or pathlength

postprocessor
Validate tally weighting.

3.25.3 [HYBRID=WW]

Importance maps to accelerate Shift calculations can be set manually from a previous Omnibus output file.
The field_type parameter selects a field to read from that input file.

deleted field
Entry field has been deleted: Use ‘field_type’ instead.

parameter field_type
Dataset from which to calculate weight windows.

Table 37: Weight window input options.

Option Description

auto Automatically select from the following options based on the
contents of the HDF5 file. This will prefer ww to adjoint
to forward.

ww Use previously calculated weight windows in the hybrid/
ww group.

adjoint Use a Denovo solution in denovo-adjoint/flux as an im-
portance map, setting weight window centers to the inverse
of the adjoint flux.

forward Use a Denovo solution in denovo-forward/flux directly
as weight window centers, the Cooper–Larsen method.

The default field type is auto, which will build from previously built weight windows if they are
present in the file. If not, the weight windows will be built from the adjoint flux in the file. If neither
weight windows nor an adjoint flux is present, the weight windows will be built proportional to the
forward flux.

Default auto

226

Type auto, forward, adjoint, or ww

parameter input
Manual weight window HDF5 file.

Type file path for reading (extension ‘.h5’)

deleted method
Entry method has been deleted: Use ‘field_type’ instead.

parameter normalization
parameter norm

Multiplicative normalization for weight windows.

Default 1.0

Type positive real number

Applicable when normalization_method is manual

parameter normalization_method
parameter norm_method

How to normalize weight window centers based on source responses.

Default cadis

Type manual or cadis

3.26 PRE-EXECUTION UTILITIES: [PRE]

These utilities are run via omnibus-run on the local system before the Omnibus executable is launched.

sublist [PLOT]
Generate a raytraced slice of the model. See [PRE][PLOT] (page 227).

Default (empty sublist)

Applicable when

• ‘ENABLE_PYTHON_WRAPPERS’ is enabled in this CMake build; and

• The ‘matplotlib’ python package is installed

3.26.1 [PRE][PLOT]

This experimental feature uses the Exnihilo python bindings to generate raytraced images of the problem
geometry. To generate more customized outputs, the interested user should use the direct Python bindings
(see the examples).

Tip: For example, this entry in the front end will generate three slices showing the materials at z = −10,−5, 0,
with the lower left coordinate at (x, y) = (−15,−20) and the upper right coordinate at (15, 20):

[PRE]

[.][PLOT levels]
origin -15 -20 0
axis z
size 30 40
slice -10 -5 0

227

parameter axis
Axis orthogonal to the image.

Default 2

Type axis (‘x’,’y’,’z’)

parameter check
Use error checking during raytrace.

Default False

Type boolean

parameter cmap(advanced)
Color map for plotting.

Default rainbow if trace cell else Set3

Type string without special characters

parameter name
Base name of the output file.

Default plotNNN

Type string without special characters

parameter origin
Lower-left corner of the image.

Units cm

Type length-3 float vector (each element is a real number)

parameter render
Save as a standalone rendered PNG.

Default False

Type boolean

Applicable when The ‘PIL’ python package is installed

parameter resolution
Maximum number of pixels along one axis of the image.

Default 1024

Type positive integer

parameter size
Width and height of the image slice.

Units cm

Type pair of floats (each element is a positive real number)

parameter slice
Positions along ‘axis’ to take slices, relative to ‘origin.’

228

Default 0.0

Type non-empty float list (each element is a real number)

parameter trace
Model property to raytrace.

Default mat

Type cell or mat

3.27 POST-PROCESSING: [POST]

The [POST] block controls post-processing of Omnibus output. It extracts data from the HDF5 output file
and formats it to be more human-accessible.

database [DENOVO]
Denovo post-processing options. See [POST][DENOVO] (page 230).

Default (empty database)

Applicable when solver is ‘denovo’

database [DEPLETION]
Depletion post-processing options. See [POST][DEPLETION] (page 231).

Default (empty database)

Applicable when solver is ‘depletion’

parameter html
Convert the ReStructured Text problem summary to HTML.

Default False

Type boolean

Applicable when rst is True

database [HYBRID]
Shift post-processing options. See [POST][HYBRID] (page 231).

Default (empty database)

Applicable when problem mode is hybrid

parameter rst
Write a ReStructured Text problem summary.

Default True

Type boolean

database [TALLY]
Tally post-processing options. See [POST][TALLY] (page 230).

Default (empty database)

Applicable when

• solver is ‘shift’; and

• /shift/do_transport is True

229

3.27.1 [POST][TALLY]

Tally post-processing options.

parameter cell_csv
Generate CSV files from cell tallies.

Default True

Type boolean

parameter kcode_plots
Generate keff and convergence plots.

Default True

Type boolean

Applicable when problem mode is kcode

parameter max_csv_size(advanced)
Maximum allowed size of average CSV output file.

Default 500.0

Units kB

Type positive real number

Applicable when cell_csv is True

parameter mesh_xdmf
Generate XDMF files from mesh tallies.

Default True

Type boolean

3.27.2 [POST][DENOVO]

Denovo post-processing options.

sublist [SPECTRUM]
Save spectra from a list of x/y/z points. See [POST][DENOVO][SPECTRUM] (page 231).

Default (empty sublist)

Applicable when /denovo/disable is none

parameter xdmf
Create an XDMF file for visualization.

Default True

Type boolean

Applicable when /denovo/disable is none

230

3.27.3 [POST][HYBRID]

Shift post-processing options.

parameter ww_xdmf
Create an XDMF file for weight windows.

Default True

Type boolean

Applicable when /shift/vr/output is True

3.27.4 [POST][DEPLETION]

Depletion post-processing options.

parameter max_csv_size(advanced)
Maximum allowed size of average CSV output file.

Default 500.0

Units kB

Type positive real number

Applicable when nd_csv is True or xs_csv is True

parameter nd_csv
Write Excel-compatible CSV files with number densities.

Default True

Type boolean

parameter xs_csv
Write CSV files with cross sections.

Default True

Type boolean

Applicable when /depletion/write_xs is True

3.27.5 [POST][DENOVO][SPECTRUM]

Save spectra from a list of x/y/z points.

parameter field
Output field from which to save spectra.

Default flux

Type flux, source, or uncflux

postprocessor
The requested field must be enabled in the Denovo output block.

parameter name
Short title or label for the source.

Default spectrumNNN

231

Type string without special characters

parameter normalization
Constant multiplicative factor to apply to spectra.

Default 1.0

Type positive real number

parameter on_disk(advanced)
Refrain from loading the solution into memory.

Default False

Type boolean

parameter points
List of x/y/z points.

Type List of space-separated x/y/z tuples (each element is a real number)

232

4. GEOMETRIA INPUT DESCRIPTION

The Geometria input format is identical to the Omnibus input format and is split into a hierarchy of blocks.
All input blocks are described in the following sections.

Note: This documentation was generated automatically with the following version of Exnihilo:

version 6.3.pre-b13 (branch ‘master’ on ‘upstream’, r729: #9809b44f on 2020JUL16)

date 2020-07-16 22:02:43

4.1 GEOMETRIA INPUT FILE CONTENTS

Each of the top-level blocks (and the overall problem input file) are described here.

database [GEOMETRY]
Global geometry options. See [GEOMETRY] (page 233).

sublist [UNIVERSE]
Universes. See [UNIVERSE] (page 234).

postprocessor
Universe names in /geometry/global must already have been defined.

4.1.1 [GEOMETRY]

Global geometry options.

parameter check_overlapping_volumes
Perform extra (and slow) geometry validation checks during transport.

Default False

Type boolean

parameter composition
parameter comp

Provide an optional explicit mapping for composition names.

Default ---

Type list in which each element is a string

command comps
Map ‘comp’ to ‘matid’ from pairs or arrow-separated items.

Creates comp

Creates matid

parameter deduplication_warning
parameter dedupe_warn

Warn about duplicate surfaces being elided.

Default False

233

Type boolean

parameter global
Name of the global universe.

Type string without special characters

parameter length_scale
Characteristic length scale of the problem.

Default 1.0

Type positive real number

parameter matid
Matids corresponding to the given commposition names.

Default ---

Type list in which each element is a non-negative integer

postprocessor
The parameters composition and matid must have the same length.

parameter tolerance
parameter tol

Global tolerance for geometry construction and particle bumping.

Default 1e-08

Type real number inside (0, 1)

parameter write_kdtree(advanced)
Output the k-D tree representation for each universe.

Default False

Type boolean

4.2 UNIVERSE DEFINITIONS: [UNIVERSE]

Universes are analogous to ‘units’ in KENO: an independent, complete definition of the problem within some
region of space. Universes can be reused multiple times via holes (page 243) and arrays (page 237).

Table 38: Available types for the [UNIVERSE] database

Type Description Applicability

general (page 235) General universe
keno6 (page 235) KENO6 universe
random (page 237) Randomly constructed universe
array (page 237) Rectangular array
hexarray (page 239) Hexagonal array
dodarray (page 241) Dodecahedral array
rtk (page 242) Insert an RTK geometry from an external file
core (page 243) Insert a VERA-defined reactor core
rtkarray Alias to rtk type —

234

4.2.1 [UNIVERSE=GENERAL]

The “general” universe is a constructive solid geometry universe, essentially equivalent to a “unit” in KENO.
Its components are “cells”, solid bodies with a single fill material, and “holes”, which are other universes
embedded into this general universe.

command boundary
Create an interior parameter for a single bounding shape.

Creates interior

sublist [CELL]
Cell definition. See [UNIVERSE][CELL] (page 244).

Default (empty sublist)

sublist [HOLE]
Inserted sub-universes. See [UNIVERSE][HOLE] (page 243).

Optional

parameter interior
Senses and shape names defining the interior of this universe.

Type list in which each element is a shape with optional leading +- sense

postprocessor
Check that interior shapes have been defined.

parameter name
Name of the universe.

Type string without special characters

sublist [SHAPE]
Geometry shapes. See [UNIVERSE][SHAPE] (page 246).

Default (empty sublist)

4.2.2 [UNIVERSE=KENO6]

The “KENO” universe activates features necessary to build KENO geometry definitions using GG. Unlike
GG, KENO continually tracks on many geometry layers simultaneously, so that the “topmost” layer’s cells
are used. This allows holes and arrays to be defined without integrating them into the daughter universes –
they simply override whatever is there.

GG’s tracking engine operates differently: it tracks on only one universe at a time, so that in any universe, a
single point in space corresponds to exactly one logical position in that universe, or else it is in the “exterior”
of that universe. Particles hitting the exterior are transported to another universe (except in the outermost
universe where the boundary condition is applied).

To unify these two tracking types, this special universe uses intersection tests to automatically modify the cell
definitions. It uses shape-to-shape intersection tests to determine whether any of the specified holes, arrays,
or external boundaries modify the cells interior to the problem. The test for shape A intersecting shape B can
return one of five results:

Separate A and B do not intersect.

235

Identical A and B are exactly the same shape: their logical definition and surfaces are identical.

Encloses The region in A is a superset of the region of B

Enclosed by The region in B is a superset of the region of A

Overlaps The two regions may intersect (or one may even enclose the other). This result increases geometry
complexity but is the most conservative.

Some of the shape-to-shape intersection tests are more accurate than others. Spheres, aligned cylinders,
cuboids, and planes can tell their exact relationship to shapes of the same kind, but it’s not always possible to
tell the exact intersection result for some shapes. The conservative case extends cell definitions to exclude the
shapes in question.

sublist [ARRAY]
Implicitly truncated arrays. See [UNIVERSE][ARRAY] (page 244).

Optional

command boundary
Create an interior parameter for a single bounding shape.

Creates interior

sublist [CELL]
Cell definition. See [UNIVERSE][CELL] (page 244).

Default (empty sublist)

sublist [HOLE]
Inserted sub-universes. See [UNIVERSE][HOLE] (page 243).

Optional

parameter interior
Senses and shape names defining the interior of this universe.

Type list in which each element is a shape with optional leading +- sense

postprocessor
Check that interior shapes have been defined.

parameter name
Name of the universe.

Type string without special characters

sublist [SHAPE]
Geometry shapes. See [UNIVERSE][SHAPE] (page 246).

Default (empty sublist)

236

4.2.3 [UNIVERSE=RANDOM]

The “random” universe is a procedurally generated universe filled with a given volume fraction of spheres. It
is used for HTGRs to model pebbles and TRISO particles.

It is defined by specifying one or more previously defined spherical universes (e.g. particles with different
compositions) that will be replicated inside the universe. The number of embedded particles is determined by
specifying a volume fraction v such that Ni =

vfiVT
Vi

for particle type i which has volume Vi inside an object of
volume Vt.

The region outside the sampled particles is filled with the single composition composition. (If the random
universe is a fuel pebble and the particles are TRISO particles, this composition will be the graphite matrix.)

Currently, the only shapes supported as bounding shapes are a single cuboid, sphere, and cylinder without
any rotations or translations applied.

parameter composition
parameter comp

Composition outside of the particles (the matrix).

Type non-empty string

parameter fill
Names of particle universes to emplace.

Type list in which each element is a string without special characters

postprocessor
Universe names in fill must already have been defined.

parameter name
Name of the universe.

Type string without special characters

database [OPTIONS]
Random universe construction options. See [UNIVERSE][OPTIONS] (page 245).

database [SHAPE]
Geometry shapes. See [UNIVERSE][SHAPE] (page 246).

parameter volume_fraction
parameter vf

Names of particle universes to emplace.

Type fractions that sum to less than one (each element is a real number inside (0, 1))

4.2.4 [UNIVERSE=ARRAY]

Rectangular array.

command boundary
Create an interior parameter for a single bounding shape.

Creates interior

parameter clip_composition

237

parameter clip
Composition that will replace any clipped array cell.

Optional

Type non-empty string

parameter fill
Names of array universe fills, indexed as ZUV.

Type list in which each element is a string without special characters

postprocessor
Universe names in fill must already have been defined.

sublist [HOLE]
Inserted sub-universes. See [UNIVERSE][HOLE] (page 243).

Optional

parameter interior
Sense/shapes defining the interior of the array.

Optional

Type list in which each element is a shape with optional leading +- sense

postprocessor
Check that interior shapes have been defined.

parameter name
Name of the universe.

Type string without special characters

parameter nx
Number of units in the X direction.

Type positive integer

parameter ny
Number of units in the Y direction.

Type positive integer

parameter nz
Number of units in the Z direction.

Default 1

Type positive integer

postprocessor
Check array sizes.

parameter origin
Location of the lower-left corner of the array bounds.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

238

parameter origin_is
Whether origin is the array lower-left or a unit origin.

Default ‘array’ unless the ‘place’ parameter is present

Type array or unit

parameter place
Location of the lower-left corner of the array bounds.

Type length-3 logical position vector (each element is a non-negative integer)

Applicable when origin_is is unit

sublist [SHAPE]
Geometry shapes. See [UNIVERSE][SHAPE] (page 246).

Default (empty sublist)

4.2.5 [UNIVERSE=HEXARRAY]

Hexagonal array.

command boundary
Create an interior parameter for a single bounding shape.

Creates interior

parameter clip_composition
parameter clip

Composition that will replace any clipped array cell.

Optional

Type non-empty string

parameter fill
Names of array universe fills, indexed as ZUV.

Type list in which each element is a string without special characters

postprocessor
Universe names in fill must already have been defined.

sublist [HOLE]
Inserted sub-universes. See [UNIVERSE][HOLE] (page 243).

Optional

parameter interior
Sense/shapes defining the interior of the array.

Type list in which each element is a shape with optional leading +- sense

postprocessor
Check that interior shapes have been defined.

parameter layout
Layout of the hex array elements.

239

Default rhomb

Type rhomb or rect

parameter name
Name of the universe.

Type string without special characters

parameter nu
Number of units in the U direction.

Type positive integer

parameter nv
Number of units in the V direction.

Type positive integer

parameter nz
Number of units in the Z direction.

Default 1

Type positive integer

postprocessor
Check array sizes.

parameter origin
Location of the lower-left corner of the array bounds.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

parameter origin_is
Whether origin is the array lower-left or a unit origin.

Default ‘array’ unless the ‘place’ parameter is present

Type array or unit

parameter place
Location of the lower-left corner of the array bounds.

Type length-3 logical position vector (each element is a non-negative integer)

Applicable when origin_is is unit

sublist [SHAPE]
Geometry shapes. See [UNIVERSE][SHAPE] (page 246).

Default (empty sublist)

240

4.2.6 [UNIVERSE=DODARRAY]

Dodecahedral array.

command boundary
Create an interior parameter for a single bounding shape.

Creates interior

parameter clip_composition
parameter clip

Composition that will replace any clipped array cell.

Optional

Type non-empty string

parameter fill
Names of array universe fills, indexed as ZUV.

Type list in which each element is a string without special characters

postprocessor
Universe names in fill must already have been defined.

sublist [HOLE]
Inserted sub-universes. See [UNIVERSE][HOLE] (page 243).

Optional

parameter interior
Sense/shapes defining the interior of the array.

Type list in which each element is a shape with optional leading +- sense

postprocessor
Check that interior shapes have been defined.

parameter name
Name of the universe.

Type string without special characters

parameter nx
Number of units in the X direction.

Type positive integer

parameter ny
Number of units in the Y direction.

Type positive integer

parameter nz
Number of units in the Z direction.

Default 1

Type positive integer

241

postprocessor
Check array sizes.

parameter origin
Location of the lower-left corner of the array bounds.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

parameter origin_is
Whether origin is the array lower-left or a unit origin.

Default ‘array’ unless the ‘place’ parameter is present

Type array or unit

parameter place
Location of the lower-left corner of the array bounds.

Type length-3 logical position vector (each element is a non-negative integer)

Applicable when origin_is is unit

sublist [SHAPE]
Geometry shapes. See [UNIVERSE][SHAPE] (page 246).

Default (empty sublist)

4.2.7 [UNIVERSE=RTK]

Insert an RTK geometry from an external file.

command boundary
Create an interior parameter for a single bounding shape.

Creates interior

sublist [HOLE]
Inserted sub-universes. See [UNIVERSE][HOLE] (page 243).

Optional

parameter input
Path to the RTK geometry XML file.

Type file path for reading (extension ‘.xml’)

parameter interior
Sense/shapes defining the interior of the array.

Type list in which each element is a shape with optional leading +- sense

postprocessor
Check that interior shapes have been defined.

parameter name
Name of the universe.

Type string without special characters

sublist [SHAPE]
Geometry shapes. See [UNIVERSE][SHAPE] (page 246).

Default (empty sublist)

242

4.2.8 [UNIVERSE=CORE]

The core universe can only be used when running a VERA (Virtual Environment for Reactor Applications)
model in Omnibus or when run externally through the VERA code suite. It inserts the analyst-defined reactor
design into a Geometria input for external dosimetry applications.

parameter name
Name of universe.

Type string without special characters

4.2.9 [UNIVERSE][HOLE]

Inserted sub-universes.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter fill
Name of the universe to fill this hole with.

Type string without special characters

postprocessor
Universe names in fill must already have been defined.

parameter name
Name of the shape that this hole creates.

Type string without special characters

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

243

4.2.10 [UNIVERSE][CELL]

Cells are defined as the intersection of one or more regions defined by shapes and holes. Each shape separates
space into two half-spaces: “inside” the shape, with a “negative” sense, and “outside” the shape with a
“positive” sense. For a shape called sphere, these two senses are written as -sphere (inside) and +sphere
(outside). When another universe is placed into this general universe via a hole, it implicitly creates a shape –
the external boundary of the embedded universe – that can be referenced when defining cells.

The choice for the signs is based on the standard form of the quadric equations, such as the surface of a
sphere:

x2 + y2 + z2 − R2 = 0

When the left-hand side of this equation is positive (+), the point (x, y, z) is outside the sphere; when negative
(-), the point is inside. We think of surfaces and shapes as having outward-facing normals; when the projection
of a point onto the surface is negative, the point is inside.

parameter composition
parameter comp

Name of the composition that fills this cell.

Type non-empty string

deleted matid
Entry matid has been deleted: ‘matid’ has been replaced with ‘comp’, the name of the composition.

parameter name
Name of the cell.

Type string without special characters

parameter shapes
Senses and shape names defining this cell.

Type list in which each element is a shape with optional leading +- sense

postprocessor
Check that shapes have been defined.

parameter volume
Add a pre-calculated volume for this cell.

Optional

Type real number

4.2.11 [UNIVERSE][ARRAY]

Implicitly truncated arrays.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

244

parameter fill
Name of the universe to fill this hole with.

Type string without special characters

postprocessor
Universe names in fill must already have been defined.

parameter name
Name of the shape that this hole creates.

Type string without special characters

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.2.12 [UNIVERSE][OPTIONS]

Random universe construction options.

parameter failure_batch_size
Number of samples per batch to test.

Default 100000

Type positive integer

parameter failure_tolerance
Fraction of samples per batch that must be rejected to fail.

Default 0.99999

Type real number inside (0, 1)

parameter insert_method
Method for attempting to insert particles into a pebble.

The naive method is the simplest and slowest way to instantiate a loosely packed particle universe. It
samples random points inside the universe and rejects them if the sphere around that particle intersects
with any particle previously sampled. The naive collision detection scales with O(N2) for N particles,
and the rejection fraction approaches 1 very quickly.

When sampling with the naive method, batches of failure_batch_size samples are tallied; if the
fraction of failed samples exceeds failure_tolerance then an error will be raised.

Default naive

245

Type naive

parameter seed
Seed value for instantiating this universe.

The seed is used to choose an independent random number stream when instantiating a universe.
Different universes’ particle placements will be uncorrelated even if they share a seed, but changing
the universe’s name will change the particle placements, as the actual computational seed value is a
combination of the seed given by this parameter and the name of this universe.

Default 0

Type non-negative integer

4.3 SHAPE DEFINITIONS: [UNIVERSE][SHAPE]

Shapes are primitive solid bodies, the constituents of cells. Although this manual does not yet include helpful
images for the shape descriptions, the KENO-VI shape description section of the SCALE user manual [2] is
essentially equivalent to the input quantities in Geometria. For example, the wedge construction example
gives wedge label xbase xpt ypt zlng, and the wedge input block (page 256) defines zlng as an alias
for height, xbase as an alias for width, and xy as an alias for corner_pt.

Each shape is the intersection of half-spaces defined by primitive quadric surfaces. When a geometry
is instantiated, the shapes are decomposed into their surfaces and volumes are expressed by a logical
representation of these surfaces using boolean logic as is typical with a constructive solid geometry definition.

The coordinate system of the shape is defined using a rotation matrix and translation vector: rotations are
applied to the shape about its origin, then translations moves the daughter shape relative to the parent universe.
The transformation from a point in the shape’s coordinate system into the universe’s system is

xu = Rxs + t ,

Where the subscripts u, s refer to the universe and shape coordinate systems, respectively. The vector t is a
translation vector. To transform from the parent into the daughter system we apply the inverse:

xs = RT (xu − t) .

(Note that because R is unitary, the transpose is equal to the inverse.)

The surfaces created by each shape have unique names that can be used to reference them later, or to create
reflecting outer boundaries during construction.

Most shapes share many of the same parameters such as “reflect” and “rotate”. To reduce duplication, the
more detailed documentation is provided for the “cuboid” shape:

• euler (page 247)

• rotate (page 248)

• reflect (page 248)

Table 39: Available types for the [SHAPE] database

246

Type Description Applicability

cuboid (page 247) Box shape
box Alias to cuboid type —
sphere (page 249) Sphere shape
cyl (page 250) Cylinder shape
cylsegment (page 251) Cylinder segment shape
pad Alias to cylsegment type —
ring (page 252) Cylindrical shell shape
cylshell Alias to ring type —
prism (page 253) Regular prism shape
slab (page 255) Infinite slab shape
plane (page 255) Infinite half-space
wedge (page 256) Wedge shape
cone (page 257) Cone shape
ellipsoid (page 258) Ellipsoid shape
hopper (page 259) Hopper shape
righttet (page 260) Right tetrahedron shape
triprism (page 261) Triangular prism shape
ecylinder (page 261) Elliptical cylinder shape
rhombdod (page 262) Rhombic dodecahedron shape
ppiped (page 263) Parallelepiped
quadric (page 264) General quadric

4.3.1 [UNIVERSE][SHAPE=CUBOID]

The possible reflecting faces for the cuboid (chosen via reflect) are:

Face Description

mx lower x face
px upper x face
my lower y face
py upper y face
mz lower z face
pz upper z face

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

See [the Euler angles wikipedia page](https://en.wikipedia.org/wiki/Euler_angles#Definition_by_
intrinsic_rotations) for a graphic representation of the z, x′, z′′ rotation. This command simply generates
a rotation matrix.

Units revolution

Creates rotate

command faces
Expand into parameters xmin, xmax, ymin, ymax, zmin, and zmax.

247

https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations
https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations

Creates xmin

Creates xmax

Creates ymin

Creates ymax

Creates zmin

Creates zmax

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

The reflect option allows a subset of faces on a shape to specularly reflect particles. Enter the single
value * to reflect all faces for the given shape.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

The rotation matrix

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣a b c
d e f
g h i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is applied to a point in the shape’s coordinate system as a column vector

Rxs = R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣xy
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The input to the code is the row-major flattened list [a, b, c, d, e, f , g, h, i].

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

248

parameter xmax
Maximum x-coordinate of box source.

Type real number

postprocessor
Parameter xmin must be less than xmax.

parameter xmin
Minimum x-coordinate of box source.

Type real number

parameter ymax
Maximum y-coordinate of box source.

Type real number

postprocessor
Parameter ymin must be less than ymax.

parameter ymin
Minimum y-coordinate of box source.

Type real number

parameter zmax
Maximum z-coordinate of box source.

Type real number

postprocessor
Parameter zmin must be less than zmax.

parameter zmin
Minimum z-coordinate of box source.

Type real number

4.3.2 [UNIVERSE][SHAPE=SPHERE]

Sphere shape.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter name
Name of the shape.

Type string without special characters

parameter radius
parameter r

Radius of sphere.

Type real number

249

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.3 [UNIVERSE][SHAPE=CYL]

Cylinder shape.

parameter axis
Axis along the cylinder.

Type axis (‘x’,’y’,’z’)

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter extents
Negative and positive position along the given axis.

Type (min, max) extent values (each element is a real number)

parameter name
Name of the shape.

Type string without special characters

parameter radius
parameter r

Radius of cylinder.

Type real number

parameter reflect
Reflecting boundary surfaces.

250

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.4 [UNIVERSE][SHAPE=CYLSEGMENT]

Cylinder segment shape.

parameter angle
parameter a

Beginning angle CCW from x = 0.

Units revolution

Type real number inclusive [0.0, 1.0]

parameter arc
parameter da

Angle subtended by cylindrical segment.

Units revolution

Type real number in [0.0, 0.5]

deleted begin_angle
deleted ba

Entry begin_angle has been deleted: Replaced by ‘angle’ in turns not radians.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter extents
Negative and positive position along the z-axis.

Type (min, max) extent values (each element is a real number)

parameter inner_radius

251

parameter ri
Inner radius.

Type positive real number

parameter name
Name of the shape.

Type string without special characters

parameter outer_radius
parameter ro

Outer radius.

Type positive real number

postprocessor
Parameter inner_radius must be less than outer_radius.

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

deleted solid_angle
deleted sa

Entry solid_angle has been deleted: Replaced by ‘arc’ in turns not radians.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.5 [UNIVERSE][SHAPE=RING]

Cylindrical shell shape.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

252

parameter extents
Negative and positive position along the Z axis.

Type (min, max) extent values (each element is a real number)

parameter inner_radius
parameter ri

Inner radius.

Type real number

parameter name
Name of the shape.

Type string without special characters

parameter outer_radius
parameter ro

Outer radius.

Type real number

postprocessor
Parameter inner_radius must be less than outer_radius.

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.6 [UNIVERSE][SHAPE=PRISM]

The possible reflecting faces for a prism depend on the number of sides:

Face Description

pN for integer N in [0, num_sides), CCW from x=0
mz lower z face
pz upper z face

253

parameter apothem
parameter r

Inner radius of the prism.

Type real number

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter extents
Negative and positive position along the Z axis.

Type (min, max) extent values (each element is a real number)

parameter name
Name of the shape.

Type string without special characters

parameter num_sides
Number of sides on the prism.

Type integer >= 3

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter rotfrac
Angle (fraction of the angle spanned by one face) to rotate.

Default 0.0

Type real number inclusive [0.0, 1.0]

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

254

4.3.7 [UNIVERSE][SHAPE=SLAB]

Infinite slab shape.

parameter axis
Axis along the slab.

Type axis (‘x’,’y’,’z’)

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter extents
Negative and positive position along the slab axis.

Type (min, max) extent values (each element is a real number)

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.8 [UNIVERSE][SHAPE=PLANE]

Infinite half-space.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

255

parameter name
Name of the shape.

Type string without special characters

parameter normal
Vector (possibly unnormalized) point outward from the plane.

Type length-3 float vector (each element is a real number)

parameter point
A point somewhere on the plane.

Type length-3 float vector (each element is a real number)

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.9 [UNIVERSE][SHAPE=WEDGE]

Wedge shape.

parameter corner_pt
parameter xy

XY location of the right-angle corner of the wedge.

Type length-2 (x,y) position (each element is a positive real number)

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter height
parameter zlng

Height of the wedge (along Z axis).

256

Type positive real number

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

parameter width
parameter xbase

Length of the hypotenuse of the wedge (along the X axis).

Type positive real number

4.3.10 [UNIVERSE][SHAPE=CONE]

Cone shape.

parameter axis
Axis along the centerline of the cone.

Type axis (‘x’,’y’,’z’)

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter extents
Negative and positive base positions along the given axis.

Type (min, max) extent values (each element is a real number)

parameter name
Name of the shape.

257

Type string without special characters

parameter radii
parameter r

Radii at the top and bottom.

Type 2 positive floats (each element is a positive real number)

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.11 [UNIVERSE][SHAPE=ELLIPSOID]

Ellipsoid shape.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter name
Name of the shape.

Type string without special characters

parameter radii
parameter r

Radii in the x, y, and z directions.

Type 3 positive floats (each element is a positive real number)

parameter reflect
Reflecting boundary surfaces.

Default ---

258

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.12 [UNIVERSE][SHAPE=HOPPER]

Hopper shape.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter extents
Negative and positive base positions along the Z axis.

Type (min, max) extent values (each element is a real number)

parameter lower_pt
parameter lo

X and Y half-lengths on the low side of the hopper.

Type length-2 (x,y) position (each element is a positive real number)

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

259

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

parameter upper_pt
parameter hi

X and Y half-lengths on the high side of the hopper.

Type length-2 (x,y) position (each element is a positive real number)

4.3.13 [UNIVERSE][SHAPE=RIGHTTET]

Right tetrahedron shape.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter lengths
Length of the tetrahedron edges along the x, y, and z axes.

Type 3 positive floats (each element is a positive real number)

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

260

4.3.14 [UNIVERSE][SHAPE=TRIPRISM]

Triangular prism shape.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter lengths
Length of the triangular prism’s bounding box.

Type 3 positive floats (each element is a positive real number)

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.15 [UNIVERSE][SHAPE=ECYLINDER]

Elliptical cylinder shape.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter extents
Negative and positive position along the given axis.

Type (min, max) extent values (each element is a real number)

261

parameter name
Name of the shape.

Type string without special characters

parameter radii
parameter r

Radii in the x and y directions.

Type length-2 (x,y) position (each element is a positive real number)

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.16 [UNIVERSE][SHAPE=RHOMBDOD]

The faces of a rhombic dodecahedron are ordered so that face n connects to n + 6 mod 12 of an adjacent
lattice cell. For a dodecahedron with interior radius 1, these faces are:

Face Description

px Plane: x=1
py Plane: y=1
p0 Plane: n=(0.5 0.5 0.707107), d=1
p1 Plane: n=(0.5 -0.5 -0.707107), d=-1
p2 Plane: n=(0.5 -0.5 0.707107), d=1
p3 Plane: n=(0.5 0.5 -0.707107), d=-1
mx Plane: x=-1
my Plane: y=-1
p4 Plane: n=(0.5 0.5 0.707107), d=-1
p5 Plane: n=(0.5 -0.5 -0.707107), d=1
p6 Plane: n=(0.5 -0.5 0.707107), d=-1
p7 Plane: n=(0.5 0.5 -0.707107), d=1

262

parameter apothem
parameter r

Inner radius of the dodecahedron.

Type positive real number

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

4.3.17 [UNIVERSE][SHAPE=PPIPED]

Parallelepiped.

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter lengths
Length of the x, xy, and xyz edges.

Type 3 positive floats (each element is a positive real number)

parameter name
Name of the shape.

263

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

parameter xy_angle
parameter phi

Angle between xy component of xyz edge and x axis (phi).

Units revolution

Type real number in [0,.25)

parameter xyz_angle
parameter theta

Angle between xyz edge and z axis (theta).

Units revolution

Type real number in [0,.25)

parameter y_angle
parameter psi

Angle between xy edge and y axis (psi).

Units revolution

Type real number in [0,.25)

4.3.18 [UNIVERSE][SHAPE=QUADRIC]

General quadric.

parameter cross
parameter def

Second-order cross coefficients dXY + eYZ + f XZ.

Default 0.0 0.0 0.0

264

Type length-3 float vector (each element is a real number)

command euler
Perform an Euler rotation about the z, x′, z′′ axes.

Units revolution

Creates rotate

parameter first
parameter ghi

First-order coefficients gX + hY + iZ.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

parameter name
Name of the shape.

Type string without special characters

parameter reflect
Reflecting boundary surfaces.

Default ---

Type list of shape surfaces (e.g. mx, co) (each element is a string without special characters)

parameter rotate
Rotation matrix.

Default 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Type length-9 row-major rotation matrix (each element is a real number)

postprocessor (advanced)
Squelch identity rotations and null translations.

parameter scalar
parameter j

Scalar coefficient j.

Default 0.0

Type real number

parameter second
parameter abc

Second-order coefficients aX2 + bY2 + cZ2.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

parameter translate
parameter origin

Local-to-global translation vector.

Default 0.0 0.0 0.0

Type length-3 float vector (each element is a real number)

265

REFERENCES

[1] Kobayashi, K., Sugimura, N., and Nagaya, Y. 3-D Radiation Transport Benchmark Problems and
Results for Simple Geometries with Void Regions. Nuclear Energy Agency, 2000.

[2] Rearden (ed.), B. T. and Jessee (ed.), M. A. “SCALE code system.” Technical Report ORNL/TM-
2005/39, Version 6.2.3, Oak Ridge National Laboratory, March 2018.

[3] Johnson, S. R. “Omnibus: A New Front End to Denovo and Shift.” Transactions of the American
Nuclear Society, 117:4, 2017.

[4] Evans, T. M., Stafford, A. S., Slaybaugh, R. N., and Clarno, K. T. “DENOVO: a new three-dimensional
parallel discrete ordinates code in SCALE.” Nuclear Technology, 171:171–200, 2010.

[5] Pandya, T. M., Johnson, S. R., Evans, T. M., Davidson, G. G., et al. “Implementation, capabilities,
and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code.” Journal of
Computational Physics, 308:239–272, March 2016. URL: http://linkinghub.elsevier.com/retrieve/pii/
S0021999115008566, doi:10.1016/j.jcp.2015.12.03715.

[6] Wieselquist, W. A. “The SCALE 6.2 ORIGEN API for High Performance Depletion.” In ANS
MC2015—Joint International Conference on Mathematics and Computation (M&C), Supercomputing
in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, 11. LaGrange Park, IL, April 2015.

[7] Mosher, S. W., Johnson, S. R., Bevill, A. M., Ibrahim, A. M., et al. “ADVANTG—an automated
variance reduction parameter generator.” Technical Report ORNL/TM-2013/416-rev1, Oak Ridge
National Laboratory, 2013.

[8] Gwon, C. S., Novikova, E. I., Phlips, B. F., Strickman, M. S., et al. “Interacting with the SWORD
package (SoftWare for the Optimization of Radiation Detectors).” In 2007 IEEE Nuclear Science
Symposium Conference Record, 1130–1133. Honolulu, HI, USA, 2007. IEEE. URL: http://ieeexplore.
ieee.org/document/4437206/, doi:10.1109/NSSMIC.2007.443720616.

[9] Pandya, T. M., Evans, T. M., Clarno, K. T., and Collins, B. S. “Excore Modeling with VERA.” Technical
Report CASL-U-2017-1311-001, CASL, 2017.

[10] Wiarda, D., Dunn, M. E., Greene, N. M., Williams, M. L., et al. “AMPX-6: a modular code system for
processing ENDF/B.” Technical Report ORNL/TM-2016/43, Oak Ridge National Laboratory, April
2016.

[11] Davidson, G., Evans, T., Jarrell, J., Hamilton, S., et al. “Massively Parallel, Three-Dimensional
Transport Solutions for the k-Eigenvalue Problem.” Nuclear Science and Engineering, 177(2):111–125,
June 2014. URL: http://www.ans.org/pubs/journals/nse/a_35675, doi:10.13182/NSE12-10117.

[12] Abu-Shumays, I. K. “Angular quadratures for improved transport computations.” Transp. Theory Stat.
Phys., 30:169–204, 2001.

[13] Jarrell, J. J. An Adaptive Angular Discretization method for Neutral-Particle Transport in Three-
Dimensional Geometries. PhD thesis, Texas A&M University, 2010.

15 https://doi.org/10.1016/j.jcp.2015.12.037
16 https://doi.org/10.1109/NSSMIC.2007.4437206
17 https://doi.org/10.13182/NSE12-101

267

http://linkinghub.elsevier.com/retrieve/pii/S0021999115008566
http://linkinghub.elsevier.com/retrieve/pii/S0021999115008566
https://doi.org/10.1016/j.jcp.2015.12.037
http://ieeexplore.ieee.org/document/4437206/
http://ieeexplore.ieee.org/document/4437206/
https://doi.org/10.1109/NSSMIC.2007.4437206
http://www.ans.org/pubs/journals/nse/a_35675
https://doi.org/10.13182/NSE12-101

[14] Johnson, S. R. “Fast mix table construction for material discretization.” In International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013).
Sun Valley, ID, May 2013.

[15] Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., et al. “Geant4—a simulation toolkit.” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 506(3):250–303, July 2003. URL: http://linkinghub.elsevier.com/retrieve/pii/
S0168900203013688, doi:10.1016/S0168-9002(03)01368-818.

[16] Wagner, J. C. and Haghighat, A. “Automated variance reduction of Monte Carlo shielding calculations
using the discrete ordinates adjoint function.” Nuclear Science and Engineering, 128(2):186–208, 1998.

[17] Wagner, J. C., Peplow, D. E., Mosher, S. W., and Evans, T. M. “Review of hybrid (deterministic/Monte
Carlo) radiation transport methods, codes, and applications at Oak Ridge National Laboratory.” Proc.
Joint Intl. Conf. Supercomputing in Nucl. Appl. and Monte Carlo, 2010.

[18] X-5 Monte Carlo Team. “MCNP - a general Monte Carlo n-particle transport code, version 5.” Technical
Report LA-UR-03-1987, Los Alamos National Laboratory, 2008.

[19] Engle, Jr., W. W. “A user’s manual for ANISN: a one dimensional discrete ordinates code with
anisotropic scattering.” Technical Report K–1693, 4448708, Oak Ridge National Laboratory, January
1967. URL: http://www.osti.gov/servlets/purl/4448708/, doi:10.2172/444870819.

[20] Davidson, G. G., Pandya, T. M., Johnson, S. R., Evans, T. M., et al. “Nuclide depletion capabilities
in the Shift Monte Carlo code.” Annals of Nuclear Energy, 114:259–276, April 2018. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0306454917304322, doi:10.1016/j.anucene.2017.11.04220.

18 https://doi.org/10.1016/S0168-9002(03)01368-8
19 https://doi.org/10.2172/4448708
20 https://doi.org/10.1016/j.anucene.2017.11.042

268

http://linkinghub.elsevier.com/retrieve/pii/S0168900203013688
http://linkinghub.elsevier.com/retrieve/pii/S0168900203013688
https://doi.org/10.1016/S0168-9002(03)01368-8
http://www.osti.gov/servlets/purl/4448708/
https://doi.org/10.2172/4448708
https://linkinghub.elsevier.com/retrieve/pii/S0306454917304322
https://linkinghub.elsevier.com/retrieve/pii/S0306454917304322
https://doi.org/10.1016/j.anucene.2017.11.042

5. ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-00OR22725.

269

Appendix A. EXAMPLES

A–2

Appendix A. EXAMPLES

The following examples demonstrate many of the capabilities in Exnihilo, such as:

• creating and running a problem in Omnibus,

• postprocessing the data with the included Python tools, and

• interacting with nuclear data using the Exnihilo Python bindings.

Caution: This LaTeX version of the documentation is not able to render some of the postprocessed
output datasets. The HTML version of this document includes the missing inline tables. A future revision
to this manual will improve the typesetting to better distinguish user input, system output, and Jupyter
notebook results. Also, since the figures are the result of inline computations, they are presented as inline
text rather than figures with captions.

A.1 VISUALIZATION

These examples demonstrate basic problem visualization techniques for Denovo and Shift input.

A.1.1 OMNIBUS GEOMETRY VISUALIZATION

This example shows how to process and visualize an MCNP input and its compositions, using both the
interactive Python 2-D ray tracer and the executable 3-D Silo-based ray tracer (using mode=raytrace). We
also save the compositions to a separate HDF5 input file; they can later be used to override the compositions
provided by MCNP.

Set up example environment
import os
from exnihilotools.matplotlib import screen_style
%matplotlib inline
screen_style()
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")
%load_ext wurlitzer

Visualizing the MCNP input requires first loading the geometry. The load_mcnp command accepts either an
existing runtpe filename or the path to an MCNP input (which must have a .inp, .i, or .mcnp extension).
Generating a runtpe file requires an MCNP5 executable, since it invokes mcnp5 ix. The resulting model
stores the geometry and a vector of loaded compositions.

from omnibus.raytrace.load import load_mcnp
model = load_mcnp(os.path.join(SOURCE_DIR, "data", "dv1a.mcnp"))

Generating MCNP runtpe file...
...finished generating MCNP runtpe file in 4.5 seconds

>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input

A–3

A.1.1.1 Construct a color table

Material visualization is more easily interpreted when the chosen color scheme associates physical properties
with the materials.

The model stores a vector of wrapped C++ Composition objects. Their contents can be extracted through
accessors such as name and density, or converted into a dictionary using the _asdict method. Omnibus
includes a convenience class that mimics the C++ composition object but uses native python datatypes. Since
this class’s constructor accepts keyword arguments, it can be constructed by expanding each composition
using _asdict and using the Python keyword argument expansion **.

from omnibus.raytrace.composition import Composition
comps = [Composition(**c._asdict()) for c in model.compositions]
comps[1]

Each composition’s name is constructed by default from the MCNP material numbers in the input deck.
These can be changed to more descriptive names by using a convenience function that returns the MCNP M
card identifiers that correspond to each composition.

matno_to_name = { 0: "emptiness",
10: "fuel",
20: "gap",
30: "clad",
40: "mod"}

for c in comps:
mno = model.matnum(c.matid)
c.name = matno_to_name[mno]

The ColorMap class automatically applies colors for common reactor materials such as fuel, clad, control
rods, and water. Colors from unknown materials are assigned from the matplotlib “Set3” color map21.

from omnibus.raytrace.colors import ColorMap
colors = ColorMap.from_compositions(comps)
colors[colors.unassigned] = 'Set3'

The raytracing Imager class renders the geometry to an image. The lower and upper coordinates are the
3-D points corresponding to the lower-left and upper-right corner of the visualization window. The basis
vector completes the window specification by defining the rightward direction (x axis in the resulting plot)
of the window. Increasing the pixel count increases rendering time but provides a sharper-resolution image
when exporting. The trace option can be set to cell (plot the cell names obtained from the MCNP input)
or mat (for plotting materials, the default). Colors and names can be assigned from the compositions and
color map constructed above.

The raytracing engine uses the same particle tracking engine as Shift, so unlike the quadric-intersection-based
method in MCNP’s visualizer, it will catch actual tracking errors and is typically faster to render.

The Imager’s plot command returns a matplotlib plot displaying the cells or materials present along the
ray-traced slice. Regions not encountered in this specific trace are not displayed, increasing the zoom level
will decrease the number of materials.

21 https://matplotlib.org/3.1.0/gallery/color/colormap_reference.html#sphx-glr-gallery-color-colormap-reference-py

A–4

https://matplotlib.org/3.1.0/gallery/color/colormap_reference.html#sphx-glr-gallery-color-colormap-reference-py

from omnibus.raytrace.imager import Imager
imager = Imager(model.geometry,

lower=(-.63, -.63, 0),
upper=(.63, .63, 0),
basis=(1, 0, 0),
max_pixels=512)

imager.names = [c.name for c in comps]
imager.colors = colors
imager.plot();

Here, input files that contain the colors and the name mappings are written out so they can be imported into
the raytrace input.

from omnibus.raytrace.colors import dump_colors
dump_colors("dv1a-colors.omn", comps, colors)
%cat "dv1a-colors.omn"

[COMP]
colors

emptiness #000000
fuel #941e29
gap #afccfb
clad #774f4e
mod #2e8bdc

Save the MCNP name mapping
with open("dv1a-mcnp-names.omn", 'w') as f:

f.write("! inside [MODEL=mcnp]\n")
f.write("m")

(continues on next page)

A–5

(continued from previous page)

for mno in sorted(matno_to_name):
f.write(" {:>8} -> {:s}\n".format(mno, matno_to_name[mno]))

%cat "dv1a-mcnp-names.omn"

! inside [MODEL=mcnp]
m 0 -> emptiness

10 -> fuel
20 -> gap
30 -> clad
40 -> mod

A.1.1.2 Save compositions to HDF5

It is possible to manually load HDF5 compositions into Omnibus: composition input may be needed for
some geometry types like GG or RTK, or it can be used to override compositions present in the model. For
example, one could perturb the MCNP nuclide densities without modifying the original MCNP input file.
The following block of code saves a composition HDF5 file from the compositions that were loaded from the
model.

from omnibus.formats.comp import Compositions
from omnibus.data.group import MetadataGroup
import h5py

compout = Compositions.from_list(c._asdict() for c in comps)

with h5py.File("dv1a-comps.h5", 'w') as f:
compout.dump(f)
MetadataGroup.from_current_version().dump(f)

!h5ls -r dv1a-comps.h5

/ Group
/compositions Dataset {5}
/metadata Group
/metadata/datetime Dataset {SCALAR}
/metadata/scale_rev Dataset {SCALAR}
/metadata/scale_version Dataset {SCALAR}
/metadata/system Dataset {SCALAR}

A.1.1.3 Run the Omnibus 3D ray tracer

Now let’s execute the Omnibus raytracer (which uses the Shift geometry tracking engine to generate a Silo
visualization file). Our input file uses #include to import the material names and composition colors we
generated above.

!cp {SOURCE_DIR}/data/dv1a* .
%cat "dv1a-raytrace.omn"
!omnibus-run dv1a-raytrace.omn

[PROBLEM]
name "Pin cell ray trace example"

(continues on next page)

A–6

(continued from previous page)

mode raytrace

[MODEL=mcnp]
input "dv1a.mcnp"

! Import material names
#include "dv1a-mcnp-names.omn"

[DENOVO]
x -0.63 9i 0.63
y -0.63 9i 0.63
z -0.63 9i 0.63

[DENOVO][RAYTRACE]
rays_per_face 16

! Import the colors
#include "dv1a-colors.omn"

[DENOVO][OUTPUT]
block false

[RUN=mpi]
np 4

! Suppress output RST summary file
[POST]
rst false
INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at dv1a-raytrace.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...
INFO: Deleting existing working directory at dv1a_run_mcnp
MCNP: xact is done ...finished generating MCNP runtpe file in 4.7 seconds
INFO: Set default for 'physics' to '[{'_type': 'void'}]' in '/'
INFO: Set default for 'mode' to 'n' in '/physics/void'
INFO: Set default for 'load_scl' to 'False' in '/comp'
INFO: Set default for 'physics' to 'void' in '/denovo'
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Global Denovo mesh has 1000 cells
INFO: Writing Omnibus input ParameterList to dv1a-raytrace.inp.xml
INFO: Writing preprocessed file to dv1a-raytrace.pp.json
INFO: Writing processed ASCII input to 'dv1a-raytrace.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...

(continues on next page)

A–7

(continued from previous page)

WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading nuclide data from processed MCNP libraries
INFO: Loading compositions from MCNP input
INFO: Applying 5 user-provided composition colors
WARNING: Extents of MCNP geometry are extremely large or unknown; this may adversely␣
↪→affect 'global' tallies, entropy mesh, etc.
Building physics 'void'
Building Denovo solver internals
Ray tracing Denovo mesh
Mixing Denovo cross sections
Building Denovo sources
Initializing Denovo solver
INFO: Skipping Denovo state construction due to user option
Skipping transport due to user option
Writing Denovo HDF5 output
Run complete
Cleaning up

...finished running Omnibus in 1.5 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'dv1a-raytrace.out.h5', problem name 'Pin cell ray␣
↪→trace example', created on 2020MAR11 22:36 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'dv1a-raytrace.out.h5', problem name 'Pin cell ray␣
↪→trace example', created on 2020MAR11 22:36 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

Omnibus created one silo file (inside a subdirectory) for each KBA block (execution core), as well as one
“master” silo file, which is what we’ll open in VisIT.

!ls *silo
!visit denovo_output.silo

denovo_output.silo

denovo_output_silo:
denovo_output.0.silo denovo_output.2.silo
denovo_output.1.silo denovo_output.3.silo

A filled boundary plot lets us visualize the ray traced output. Note that the material interface reconstruction is
imprecise because we used a relatively coarse mesh. Also note that the material colors and names have been
correctly propagated.

A–8

from IPython.display import Image
Image(filename=os.path.join(SOURCE_DIR, "data", "dv1a-visit0000.png"))

A.2 DENOVO

This section provides examples, each of which demonstrates a different way to visualize, input, run, and/or
post-process typical problems for Denovo to solve.

A.2.1 DISCRETIZED MCNP GODIVA

This example demonstrates post-processing and visualization for a simple criticality problem using the
Denovo deterministic solver.

A–9

Set up example environment
import os
from exnihilotools.matplotlib import screen_style
%matplotlib inline
screen_style()
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")

The model and its cell IDs are previsualized using the Omnibus Python tools described in the geometry
visualization example.

from omnibus.raytrace.load import load_mcnp
from omnibus.raytrace.imager import Imager

model = load_mcnp(os.path.join(SOURCE_DIR, "data", "godiva_multicell.mcnp"))
imager = Imager(model.geometry,

lower=(-10, 0, -10),
upper=(10, 0, 10),
basis=(1, 0, 0),
max_pixels=1024,
trace='cell')

imager.plot();

Generating MCNP runtpe file...
...finished generating MCNP runtpe file

A.2.1.1 Execute Omnibus

Running Denovo through Omnibus requires an Omnibus input with SCALE multigroup physics. The kcode
mode specifies that this is an eigenvalue problem; the [SOLVER=eigenvalue] block specifies the numerical
accuracy of the solver result.

A–10

%cat {SOURCE_DIR}/data/denovo-godiva.omn
!omnibus-run {SOURCE_DIR}/data/denovo-godiva.omn

[PROBLEM]
name "Godiva with SMG physics, MCNP geometry"
mode kcode

[MODEL=mcnp]
input "../data/godiva_multicell.mcnp"

[PHYSICS=mg]
mg_lib "test8g_v7.1"
pn_order 0

[DENOVO]
method sc
! Spatial grid with 'interpolation' keywords
x -9.0 9i 9.0
y -9.0 9i 9.0
z -9.0 9i 9.0

[DENOVO][SILO]
flux true
output "godiva_fluxes"

[DENOVO][SOLVER=eigenvalue]
tolerance 1e-06
verbosity none

[DENOVO][QUADRATURE]
quadrature levelsym
order 4

[RUN=mpi]
np 4
INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-godiva.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
INFO: Set default for 'mode' to 'n' in '/physics/mg'
INFO: Set default for 'disable_upscattering' to 'False' in '/physics/mg'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method sc` to `equations sc`

(continues on next page)

A–11

(continued from previous page)

INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'construction' to 'levelsym' in '/denovo/quadrature'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'solver' to 'arnoldi' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '1e-07' in '/denovo/solver/upscatter'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/
↪→upscatter'
INFO: Set default for 'max_iterations' to '1000' in '/denovo/solver/upscatter'
INFO: Set default for 'verbosity' to 'low' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '1e-07' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 1000 cells
INFO: Writing Omnibus input ParameterList to denovo-godiva.inp.xml
INFO: Writing preprocessed file to denovo-godiva.pp.json
INFO: Writing processed ASCII input to 'denovo-godiva.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
WARNING: Extents of MCNP geometry are extremely large or unknown; this may adversely␣
↪→affect 'global' tallies, entropy mesh, etc.
Building physics 'mg'
INFO: Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
INFO: Retained 3 of 449 nuclides on the master AMPX library
INFO: Running XSProc on 4 cells
Building Denovo solver internals
Ray tracing Denovo mesh

(continues on next page)

A–12

(continued from previous page)

Mixing Denovo cross sections
Initializing Denovo solver
INFO: Constructing Denovo state vector with 8 groups, 1000 cells, 1 moments, 1 unknowns␣
↪→per cell
Running Denovo transport calculation
INFO: Inner Krylov iterations in replicated group 0: 7 on node 0
INFO: Inner Krylov iterations in replicated group 1: 9 on node 0
INFO: Inner Krylov iterations in replicated group 2: 7 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 0: 7 on node 0
Belos Block GMRES converged after 9 iterations.
>>> Inner Krylov iterations in replicated group 1: 9 on node 0
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 2: 7 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: Inner Krylov iterations in replicated group 0: 7 on node 0
INFO: Inner Krylov iterations in replicated group 1: 9 on node 0
INFO: Inner Krylov iterations in replicated group 2: 7 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: Inner Krylov iterations in replicated group 0: 7 on node 0
INFO: Inner Krylov iterations in replicated group 1: 9 on node 0
INFO: Inner Krylov iterations in replicated group 2: 7 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: Inner Krylov iterations in replicated group 0: 7 on node 0
INFO: Inner Krylov iterations in replicated group 1: 9 on node 0
INFO: Inner Krylov iterations in replicated group 2: 7 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 0: 7 on node 0
Belos Block GMRES converged after 9 iterations.
>>> Inner Krylov iterations in replicated group 1: 9 on node 0
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 2: 7 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 0: 7 on node 0
Belos Block GMRES converged after 9 iterations.
>>> Inner Krylov iterations in replicated group 1: 9 on node 0
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 2: 7 on node 0

(continues on next page)

A–13

(continued from previous page)

Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 0: 7 on node 0
Belos Block GMRES converged after 9 iterations.
>>> Inner Krylov iterations in replicated group 1: 9 on node 0
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 2: 7 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: Inner Krylov iterations in replicated group 0: 7 on node 0
INFO: Inner Krylov iterations in replicated group 1: 9 on node 0
INFO: Inner Krylov iterations in replicated group 2: 7 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: Inner Krylov iterations in replicated group 0: 8 on node 0
INFO: Inner Krylov iterations in replicated group 1: 10 on node 0
INFO: Inner Krylov iterations in replicated group 2: 7 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: Inner Krylov iterations in replicated group 0: 8 on node 0
INFO: Inner Krylov iterations in replicated group 1: 10 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 0: 7 on node 0
Belos Block GMRES converged after 9 iterations.
>>> Inner Krylov iterations in replicated group 1: 9 on node 0
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 2: 7 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...
Belos Block GMRES converged after 8 iterations.
>>> Inner Krylov iterations in replicated group 0: 8 on node 0
Belos Block GMRES converged after 10 iterations.
>>> Inner Krylov iterations in replicated group 1: 10 on node 0
Belos Block GMRES converged after 7 iterations.
>>> Inner Krylov iterations in replicated group 2: 7 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...

(continues on next page)

A–14

(continued from previous page)

Belos Block GMRES converged after 8 iterations.
>>> Inner Krylov iterations in replicated group 0: 8 on node 0
Belos Block GMRES converged after 10 iterations.
>>> Inner Krylov iterations in replicated group 1: 10 on node 0
INFO: Inner Krylov iterations in replicated group 2: 8 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: Inner Krylov iterations in replicated group 0: 8 on node 0
INFO: Inner Krylov iterations in replicated group 1: 10 on node 0
INFO: Inner Krylov iterations in replicated group 2: 8 on node 0
INFO: Inner Krylov iterations in replicated group 3: 5 on node 0
INFO: Inner Krylov iterations in partitioned groups 4-7 on set 0 and node 0: 5
INFO: k-eff = 1.035583673
INFO: Writing Silo file to 4 concurrent files using material volume fractions
Writing Denovo HDF5 output
Run complete
Cleaning up
Belos Block GMRES converged after 8 iterations.
>>> Inner Krylov iterations in replicated group 2: 8 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...
The following inner iteration counts are for Arnoldi solve(wg tol = 1e...
Belos Block GMRES converged after 8 iterations.
>>> Inner Krylov iterations in replicated group 0: 8 on node 0
Belos Block GMRES converged after 10 iterations.
>>> Inner Krylov iterations in replicated group 1: 10 on node 0
Belos Block GMRES converged after 8 iterations.
>>> Inner Krylov iterations in replicated group 2: 8 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in replicated group 3: 5 on node 0
Belos Block GMRES converged after 5 iterations.
>>> Inner Krylov iterations in partitioned groups 4-7 on set 0 and nod...

...finished running Omnibus in 2.1 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-godiva.out.h5', problem name 'Godiva with␣
↪→SMG physics, MCNP geometry', created on 2020MAR11 22:36 using SCALE version 6.3.pre-
↪→b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-godiva.out.h5', problem name 'Godiva with␣
↪→SMG physics, MCNP geometry', created on 2020MAR11 22:36 using SCALE version 6.3.pre-
↪→b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-godiva.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-godiva.rst

...finished building RST summary

A–15

The run itself produces a single HDF5 file (or two HDF5 files if parallel HDF5 is in use). The post-processor
creates a ReStructured Text file that summarizes the problem run, which can optionally be disabled in the
[POST] post-processing block of the user input.

Print the first 35 lines of the text output
with open('denovo-godiva.rst') as f:

for i in range(35):
print(next(f).rstrip())

print("...")

###
Problem and system information (``system``)
###

:Problem name: Godiva with SMG physics, MCNP geometry
:Identifier: ``2020-03-11-c639aa1c-3850-4e22-83f0-e0e43942b810``
:Input path: ``denovo-godiva.inp.xml``

Software versions:

:SCALE version: 6.3.pre-b10 r539
:Release date: 2020 Mar 10
:SCALE data version: data (#13321298 on 2019APR11)

Software installation:

:Build date: 2020MAR10
:Build platform: machine 'vostok' running Darwin version 18.7.0 (x86_64)
:Install dir: /rnsdhpc/code/install/Exnihilo-examples

Runtime information:

:Host: vostok
:# processors: 4
:Start time: Wed Mar 11 22:36:34 2020
:Working dir: /rnsdhpc/code/build/Exnihilo-examples/Exnihilo/packages/Omnibus/driver/
↪→example/denovo-godiva

##
Geometry and model information (``model``)
##

**
MCNP Geometry Description
**

...

A.2.1.2 Postprocess Denovo eigenvalue results

The first step of data postprocessing is loading a wrapper for the Denovo output file. By default, this only
references the data on disk; but since it is a small output file that will fit entirely in memory on our analysis
computer, the extract method can be used immediately to load it into memory. However, for very large

A–16

files it may be impossible to load the entire data file into memory, in which case the extract method should
not be called. Instead, each time the output data is accessed, an HDF5 read operation will be performed on
only the requested data (e.g., a single energy group). Thus these post-processing tools can be used efficiently
even for very large files by processing data in smaller chunks.

The eigenvalue is stored in the Denovo block of the output file.

from omnibus.formats.output import load
from exnihilotools.unittest.comparer import Comparer

output = load("denovo-godiva.out.h5").extract()
keff = output['denovo']['keff'].data
print("Keff =", keff)

Check that the calculated keff value is within 4% of the analytic solution
assertSoftEquiv = Comparer(float_tolerance=0.04)
assertSoftEquiv(1.0, keff)

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-godiva.out.h5', problem name 'Godiva with␣
↪→SMG physics, MCNP geometry', created on 2020MAR11 22:36 using SCALE version 6.3.pre-
↪→b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

Keff = 1.0355836734048962

The entire set of denovo results are readily available:

dnv = output['denovo']
dnv

The above table shows all the datasets and groups present in the original file. Note that since the data reside
in memory, the hdf_file attribute is blank. The other attributes are blank because, by default, they are not
written to the output. Additional entries to the [DENOVO][OUTPUT] block will cause them to be written to
disk.

The omnibus.field.Field data wrappers allow easy indexing and slicing of the data: it is not necessary to
manually determine integer indices in the output: the spatial or energy values can be used directly. Slicing is
usually done by taking a “cross sectional” view (hence, xs) of the data. The selection attribute of a slice
shows where the slice was taken from (i.e., what part of the original data is selected).

All the axes remain part of the sliced field, so each dataset always retains knowledge of its dimensions and
name. The names of the sliced fields are used by omnibus.plot to automatically determine the kind of plot
to produce.

The following command plots the flux along the z axis in cells where x = y = 0 in energy group g = 1:

from omnibus.data import plot

plots = plot(dnv['flux'].xs(x=0, y=0, g=1))
ax = plots['ax']
ax.set_ylim(0, None)
ax.set_title(ax.get_ylabel())
ax.set_ylabel("Particle flux (p/cm^2-s)");

A–17

Rendering a slice of the flux as a pseudocolor plot is similarly trivial. The options on the matplotlib
LogNorm22 class constrain the range of the color scale.

print("Max flux:", dnv.flux.xs(g=3, z=1.0).data.max())
print("Min flux:", dnv.flux.xs(g=4, z=1.0).data.min())

Max flux: 1.5522386128007388
Min flux: 0.003584260291936911

from matplotlib.colors import LogNorm

norm = LogNorm(vmin=1e-3, vmax=1)
plot(dnv.flux.xs(g=3, z=1.0), norm=norm)
plot(dnv.flux.xs(g=4, z=5.0), norm=norm);

22 http://matplotlib.org/api/colors_api.html#matplotlib.colors.LogNorm

A–18

http://matplotlib.org/api/colors_api.html#matplotlib.colors.LogNorm
http://matplotlib.org/api/colors_api.html#matplotlib.colors.LogNorm

A.2.1.3 Visualize 3D data

The denovo_godiva.omn input is configured with a [SILO] block to create a Silo-format visualization file,
godiva_fluxes.silo, containing a voxelized representation of the scalar flux and the materials. This is an
alternate way to view and manipulate data produced from Omnibus.

Launch VisIt and open godiva_fluxes.silo to view this data. An image of the scalar flux has been pre-generated

A–19

in VisIt an example:

from IPython.display import Image
Image(os.path.join(SOURCE_DIR, "data", "godiva_scalar_flux_1.png"), width=600)

A.2.2 A TOY SHIELDING PROBLEM

This example demonstrates:

• Denovo’s capability to directly discretize and use an MCNP source definition,

• the various Denovo spatial discretization methods, and

• post-processing/flux visualization for a criticality problem.

Three spatial discretization methods will be explored:

• a first order method, Step Characteristics (SC),

• a second order method, Linear Discontinuous (LD), and

A–20

• a diffusion-based method, the Simplified PN (SPN) finite volume discretization.

The Denovo method parameter in this manual provides guidance on the choice of discretization scheme:

• SC guarantees positive solutions. It is the preferred method for difficult shielding problems and for
problems where a coarse spatial mesh must be used.

• LD methods are often more accurate than SC methods, but they do not guarantee positivity of the
solution. They are most appropriate for problems that are not prone to negative solutions (such as
reactors).

• SPN provides fast, accurate solutions primarily for light water reactor eigenvalue problems.

This example uses the expedients of a reduced mesh resolution and a smaller multigroup library to decrease
run time. The parameters here are not characteristic of a reliable analysis and should not be construed as such.

Set up example environment
import os
from exnihilotools.matplotlib import screen_style
%matplotlib inline
screen_style()
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")

A.2.2.1 Visualize the geometry

The [PRE] block in the input file generates images of the geometry before the Omnibus executable is run. It
is automatically run when omnibus-run is called, but it can also be used with the standalone omnibus-pre.

In this input file, the autoname command is used to automatically set MCNP names based on the material
compositions. (It substitutes “ss” for “m1” and “water” for “m2”).

!grep -A 4 "\[PRE\]" {SOURCE_DIR}/data/denovo-ironsphere.omn
!omnibus-pre {SOURCE_DIR}/data/denovo-ironsphere.omn

[PRE]
[PRE][PLOT]
origin -10 -10 0
size 20 20
axis z
INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ironsphere.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...
MCNP: xact is done ...finished generating MCNP runtpe file in 2.6 seconds
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input

(continues on next page)

A–21

(continued from previous page)

INFO: Set default for 'disable_upscattering' to 'False' in '/physics/mg'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/upscatter'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/
↪→upscatter'
INFO: Set default for 'max_iterations' to '1000' in '/denovo/solver/upscatter'
INFO: Set default for 'verbosity' to 'low' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 4096 cells
INFO: Writing Omnibus input ParameterList to denovo-ironsphere.inp.xml
>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
Generating geometry image...
INFO: Saved geometry image at z=0 to 'plot000_z0.pdf'

...finished generating geometry image
INFO: Writing preprocessed file to denovo-ironsphere.pp.json

from IPython.display import display_pdf
with open('plot000_z0.pdf', 'rb') as f:

display_pdf(f.read(), raw=True)

A.2.2.2 SC results

The following Omnibus input uses SCALE multigroup physics for the Denovo calculation. The forward
mode specifies a fixed source problem for this shielding calculation; the [SOURCE=mcnp] uses the MCNP
SDEF card to generate the source term; the DENOVO method specifies the spatial discretization; and the
[SOLVER=fixed] block specifies an overall desired convergence tolerance for this fixed source problem.

To avoid repeating the same input file for the three different methods in this example, a “base” input file
stores the common parameters. Each individual method uses a Python snippet to tweak the input. Calling
omnibus-run on multiple input arguments allows them to modify a common input.

A–22

%cat {SOURCE_DIR}/data/denovo-ironsphere.omn {SOURCE_DIR}/data/denovo-ironsphere-sc.py

[PROBLEM]
name "Iron sphere"
mode forward

[MODEL=mcnp]
input "../data/ironsphere.mcnp"
autoname

[SOURCE=mcnp]

[PHYSICS=mg]
mg_lib "test8g_v7.1"
mode n
pn_order 3

[DENOVO]
! Need to add 'method' via a supplementary python input

! import numpy as np
! x = (np.logspace(0,1,9) - 0.9) * 20 / (10-0.9)
! y = np.concatenate([-x[::-1], x[1:]])
! print(" ".join('{:.6f}'.format(v) for v in y))
x -20.000000 -14.503169 -10.381128 -7.290033 -4.972039 -3.233788 -1.930284

-0.952794 -0.219780 0.952794 1.930284 3.233788 4.972039 7.290033 10.381128
14.503169 20.000000

y -20.000000 -14.503169 -10.381128 -7.290033 -4.972039 -3.233788 -1.930284
-0.952794 -0.219780 0.952794 1.930284 3.233788 4.972039 7.290033 10.381128
14.503169 20.000000

z -20.000000 -14.503169 -10.381128 -7.290033 -4.972039 -3.233788 -1.930284
-0.952794 -0.219780 0.952794 1.930284 3.233788 4.972039 7.290033 10.381128
14.503169 20.000000

[DENOVO][SOLVER=fixed]
tolerance 1e-03

[.][WITHIN_GROUP]
verbosity none

[DENOVO][QUADRATURE]
quadrature qr
construction product
num_azi 4
num_polar 4

[RUN=mpi]
np 4

[PRE]
[PRE][PLOT]
origin -10 -10 0

(continues on next page)

A–23

(continued from previous page)

size 20 20
axis z
###
File : Omnibus/driver/example/data/denovo-ironsphere-sc.py
Date : Fri Nov 18 14:03:23 2016
##
from __future__ import (division, absolute_import, print_function,)
#---#

print("Running from inside the python script:", locals().keys())

Modify the problem name
db['problem']['name'] += " (SC)"
db['output'] = {'output': 'denovo-ironsphere-sc.out.h5'}

Set the method to 'sc'
db['denovo']['method'] = "sc"

###
end of Omnibus/driver/example/data/denovo-ironsphere-sc.py
###

!omnibus-run {SOURCE_DIR}/data/denovo-ironsphere.omn {SOURCE_DIR}/data/denovo-ironsphere-
↪→sc.py

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ironsphere.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...
Running from inside the python script: dict_keys(['db', '__builtins__', 'division',
↪→'absolute_import', 'print_function'])

...finished loading problem db from Python file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
INFO: Set default for 'disable_upscattering' to 'False' in '/physics/mg'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method sc` to `equations sc`
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'

(continues on next page)

A–24

(continued from previous page)

INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/upscatter'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/
↪→upscatter'
INFO: Set default for 'max_iterations' to '1000' in '/denovo/solver/upscatter'
INFO: Set default for 'verbosity' to 'low' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 4096 cells
INFO: Renaming existing file denovo-ironsphere.inp.xml to denovo-ironsphere.inp-20200311-
↪→2237.xml
INFO: Writing Omnibus input ParameterList to denovo-ironsphere.inp.xml
>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
Generating geometry image...
INFO: Saved geometry image at z=0 to 'plot000_z0.pdf'

...finished generating geometry image
INFO: Renaming existing file denovo-ironsphere.pp.json to denovo-ironsphere.pp-20200311-
↪→2237.json
INFO: Writing preprocessed file to denovo-ironsphere.pp.json
INFO: Writing processed ASCII input to 'denovo-ironsphere.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
WARNING: Extents of MCNP geometry are extremely large or unknown; this may adversely␣
↪→affect 'global' tallies, entropy mesh, etc.
Building physics 'mg'
INFO: Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'

(continues on next page)

A–25

(continued from previous page)

INFO: Retained 21 of 449 nuclides on the master AMPX library
INFO: Running XSProc on 2 cells
WARNING: Remapped 2 nuclide IDs: 6012->6000, 6013->6000
Building sources
Building Denovo solver internals
Ray tracing Denovo mesh
Mixing Denovo cross sections
Building Denovo sources
Constructing forward sources for Denovo
WARNING: MCNP source discretization is currently experimental: only a single isotropic␣
↪→volumetric source will be treated correctly.
WARNING: Discretization of source (type MCNP) was undersampled (undersampling fraction 0.
↪→999329).
WARNING: Consider increasing the number of samples per batch or decreasing the source␣
↪→bounding box to (-0.952794,-0.952794,-0.952794) - (0.952794,0.952794,0.952794)
Initializing Denovo solver
INFO: Constructing Denovo state vector with 8 groups, 4096 cells, 16 moments, 1 unknowns␣
↪→per cell
Running Denovo transport calculation
Forward group 0 finished in 3 Belos Block GMRES iterations in 1 s...
Forward group 1 finished in 4 Belos Block GMRES iterations in 1 s...
Forward group 2 finished in 5 Belos Block GMRES iterations in 1 s...
Forward group 3 finished in 3 Belos Block GMRES iterations in 1 s...
INFO: Forward groups 4-7 finished in 25 Belos Block GMRES iterations.
INFO: Writing Silo file to 4 concurrent files using material volume fractions
Writing Denovo HDF5 output
Run complete
Cleaning up
Belos Block GMRES converged after 25 iterations.
>>> Forward groups 4-7 finished in 25 Belos Block GMRES iterations.

...finished running Omnibus in 3.3 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-sc.out.h5', problem name 'Iron␣
↪→sphere (SC)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-sc.out.h5', problem name 'Iron␣
↪→sphere (SC)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-ironsphere-sc.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-ironsphere-sc.rst

...finished building RST summary

After executing Omnibus, the data can be extracted and visualized:

A–26

from omnibus.formats.output import load

dnv_sc = load("denovo-ironsphere-sc.out.h5")['denovo'].extract()
dnv_sc

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-sc.out.h5', problem name 'Iron␣
↪→sphere (SC)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

print(dnv_sc['flux'].shape)
print(dnv_sc['flux'].dims)

(8, 16, 16, 16)
['g', 'z', 'y', 'x']

Print group-5 flux
flux_sc = dnv_sc.flux.xs(g=5)
flux_sc

from omnibus.data import plot

def plot_x_flux(flux, groups):
"""Plot multigroup wise fluxes along the x axis"""
ax = None
for g in groups:

plots = plot(flux.xs(y=0.0, z=0.0, g=g), logy=True, ax=ax)
ax = plots['ax']
plots['plot'][0].set_label(flux.axis('g').describe_index(g))

ax.legend(loc='lower right')
ax.set_title("")
ax.set_xlabel("x [cm]")
ax.set_ylabel("Neutron flux [n/cm2-s]")

plot_x_flux(dnv_sc['flux'], range(3, 6))

A–27

Two-dimensional pseudocolor plots of the flux are easy to render. Note that the ray effects seen in the
following plot are characteristic of any discrete ordinate method, including SC.

flux_slice = dnv_sc['flux'].xs(g=5, y=0.0)
print("Flux spans {:.2e} to {:.2e}".format(

flux_slice.data.min(),
flux_slice.data.max()))

Flux spans 3.72e-06 to 3.88e-03

from matplotlib.colors import Normalize, LogNorm

def plot_pcolor(flux):
norm = LogNorm(vmin=1e-8, vmax=1e-2)
plots = plot(flux.xs(g=3, y=0.0), norm=norm)
plots['ax'].title.set_position([.5, 1.05])
plots = plot(flux.xs(g=3, x=5.0), norm=norm)
plots['ax'].title.set_position([.5, 1.05])

plot_pcolor(dnv_sc['flux'])

A–28

A.2.2.3 LD results

The following changes to the base input run Omnibus with LD instead of SC.

A–29

%cat {SOURCE_DIR}/data/denovo-ironsphere.ld.py

cat: /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/example/data/denovo-
↪→ironsphere.ld.py: No such file or directory

!omnibus-run {SOURCE_DIR}/data/denovo-ironsphere.omn {SOURCE_DIR}/data/denovo-ironsphere-
↪→ld.py

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ironsphere.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
INFO: Set default for 'disable_upscattering' to 'False' in '/physics/mg'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method ld` to `equations ld`
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: ld
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: ld
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/upscatter'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/
↪→upscatter'
INFO: Set default for 'max_iterations' to '1000' in '/denovo/solver/upscatter'
INFO: Set default for 'verbosity' to 'low' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: ld
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn

(continues on next page)

A–30

(continued from previous page)

INFO: Equations: ld
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 4096 cells
INFO: Renaming existing file denovo-ironsphere.inp.xml to denovo-ironsphere.inp-20200311-
↪→2237a.xml
INFO: Writing Omnibus input ParameterList to denovo-ironsphere.inp.xml
>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
Generating geometry image...
INFO: Saved geometry image at z=0 to 'plot000_z0.pdf'

...finished generating geometry image
INFO: Renaming existing file denovo-ironsphere.pp.json to denovo-ironsphere.pp-20200311-
↪→2237a.json
INFO: Writing preprocessed file to denovo-ironsphere.pp.json
INFO: Renaming existing file denovo-ironsphere.inp.omn to denovo-ironsphere.inp-20200311-
↪→2237.omn
INFO: Writing processed ASCII input to 'denovo-ironsphere.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
INFO: Renaming existing file omnibus.out to omnibus-20200311-2237.out
INFO: Renaming existing file omnibus.err to omnibus-20200311-2237.err
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
WARNING: Extents of MCNP geometry are extremely large or unknown; this may adversely␣
↪→affect 'global' tallies, entropy mesh, etc.
Building physics 'mg'
INFO: Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
INFO: Retained 21 of 449 nuclides on the master AMPX library
INFO: Running XSProc on 2 cells
WARNING: Remapped 2 nuclide IDs: 6012->6000, 6013->6000
Building sources
Building Denovo solver internals
Ray tracing Denovo mesh
Mixing Denovo cross sections
Building Denovo sources
Constructing forward sources for Denovo
WARNING: MCNP source discretization is currently experimental: only a single isotropic␣
↪→volumetric source will be treated correctly.
WARNING: Discretization of source (type MCNP) was undersampled (undersampling fraction 0.
↪→999329).
WARNING: Consider increasing the number of samples per batch or decreasing the source␣
↪→bounding box to (-0.952794,-0.952794,-0.952794) - (0.952794,0.952794,0.952794)

(continues on next page)

A–31

(continued from previous page)

Initializing Denovo solver
INFO: Constructing Denovo state vector with 8 groups, 4096 cells, 16 moments, 4 unknowns␣
↪→per cell
Running Denovo transport calculation
Forward group 0 finished in 3 Belos Block GMRES iterations in 1 s...
Forward group 1 finished in 4 Belos Block GMRES iterations in 1 s...
Forward group 2 finished in 5 Belos Block GMRES iterations in 1 s...
Forward group 3 finished in 4 Belos Block GMRES iterations in 1 s...
INFO: Forward groups 4-7 finished in 37 Belos Block GMRES iterations.
INFO: Writing Silo file to 4 concurrent files using material volume fractions
INFO: Removing SILO directory denovo_output_silo
Writing Denovo HDF5 output
Run complete
Cleaning up
Belos Block GMRES converged after 37 iterations.
>>> Forward groups 4-7 finished in 37 Belos Block GMRES iterations.

...finished running Omnibus in 6.1 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-ld.out.h5', problem name 'Iron␣
↪→sphere (LD)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-ld.out.h5', problem name 'Iron␣
↪→sphere (LD)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-ironsphere-ld.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-ironsphere-ld.rst

...finished building RST summary

dnv_ld = load("denovo-ironsphere-ld.out.h5")['denovo'].extract()
plot_x_flux(dnv_ld['flux'], range(3, 6))
plot_pcolor(dnv_ld['flux'])

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-ld.out.h5', problem name 'Iron␣
↪→sphere (LD)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

A–32

A–33

Again, notice the ray effects in the scalar flux plot below due to LD being a discrete ordinates method.

A.2.2.4 Run with SPN

A final set of changes to the base input runs Omnibus with SP3.

%cat {SOURCE_DIR}/data/denovo-ironsphere-spn.py

###
File : Omnibus/driver/example/data/denovo-ironsphere-spn.py
Date : Fri Nov 18 14:03:23 2016
##
from __future__ import (division, absolute_import, print_function,)
#---#

Modify the problem name
db['problem']['name'] += " (SPN)"
db['output'] = {'output': 'denovo-ironsphere-spn.out.h5'}

Set the method to 'spn'
db['denovo']['method'] = "spn"
Delete the inapplicable databases
del db['denovo']['quadrature']
del db['denovo']['solver']['within_group']

###
end of Omnibus/driver/example/data/denovo-ironsphere-spn.py
###

A–34

!omnibus-run {SOURCE_DIR}/data/denovo-ironsphere.omn {SOURCE_DIR}/data/denovo-ironsphere-
↪→spn.py

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ironsphere.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
INFO: Set default for 'disable_upscattering' to 'False' in '/physics/mg'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'all' in '/denovo/solver'
INFO: Method: spn
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/upscatter'
INFO: Method: spn
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/upscatter'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/
↪→upscatter'
INFO: Set default for 'max_iterations' to '1000' in '/denovo/solver/upscatter'
INFO: Set default for 'verbosity' to 'low' in '/denovo/solver/upscatter'
INFO: Global Denovo mesh has 4096 cells
INFO: Renaming existing file denovo-ironsphere.inp.xml to denovo-ironsphere.inp-20200311-
↪→2237b.xml
INFO: Writing Omnibus input ParameterList to denovo-ironsphere.inp.xml
>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
Generating geometry image...
INFO: Saved geometry image at z=0 to 'plot000_z0.pdf'

...finished generating geometry image
INFO: Renaming existing file denovo-ironsphere.pp.json to denovo-ironsphere.pp-20200311-
↪→2237b.json
INFO: Writing preprocessed file to denovo-ironsphere.pp.json
INFO: Renaming existing file denovo-ironsphere.inp.omn to denovo-ironsphere.inp-20200311-
↪→2237a.omn
INFO: Writing processed ASCII input to 'denovo-ironsphere.inp.omn'

(continues on next page)

A–35

(continued from previous page)

INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
INFO: Renaming existing file omnibus.out to omnibus-20200311-2237a.out
INFO: Renaming existing file omnibus.err to omnibus-20200311-2237a.err
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
WARNING: Extents of MCNP geometry are extremely large or unknown; this may adversely␣
↪→affect 'global' tallies, entropy mesh, etc.
Building physics 'mg'
INFO: Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
INFO: Retained 21 of 449 nuclides on the master AMPX library
INFO: Running XSProc on 2 cells
WARNING: Remapped 2 nuclide IDs: 6012->6000, 6013->6000
Building sources
Building Denovo solver internals
Ray tracing Denovo mesh
Mixing Denovo cross sections
Building Denovo sources
Constructing forward sources for Denovo
WARNING: MCNP source discretization is currently experimental: only a single isotropic␣
↪→volumetric source will be treated correctly.
WARNING: Discretization of source (type MCNP) was undersampled (undersampling fraction 0.
↪→999329).
WARNING: Consider increasing the number of samples per batch or decreasing the source␣
↪→bounding box to (-0.952794,-0.952794,-0.952794) - (0.952794,0.952794,0.952794)
Initializing Denovo solver
INFO: Built SPN FV Element LHS Matrix with 1333248 nonzero entries.
Running Denovo transport calculation
INFO: Writing Silo file to 4 concurrent files using material volume fractions
INFO: Removing SILO directory denovo_output_silo
Writing Denovo HDF5 output
Run complete
Cleaning up
Belos Block GMRES converged after 274 iterations.

...finished running Omnibus in 2.1 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-spn.out.h5', problem name 'Iron␣
↪→sphere (SPN)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-spn.out.h5', problem name 'Iron␣
↪→sphere (SPN)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10) (continues on next page)

A–36

(continued from previous page)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-ironsphere-spn.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-ironsphere-spn.rst

...finished building RST summary

dnv_spn = load("denovo-ironsphere-spn.out.h5")['denovo'].extract()
plot_x_flux(dnv_spn['flux'], range(3, 6))
plot_pcolor(dnv_spn['flux'])

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ironsphere-spn.out.h5', problem name 'Iron␣
↪→sphere (SPN)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

A–37

Note that the SPN method demonstrates no ray effects since it is a spherical harmonics method rather than a
discrete ordinates method.

A–38

A.2.2.5 Compare the three methods

A final plot summarizes results from the three spatial discretization methods, plotting along the x axis (where
y = 0 and z = 0).

The SP3 solution is depressed at the source material bounary as expected.

All solutions agree well farther from the source.

labeled_data = [('SC', dnv_sc),
('LD', dnv_ld),
('SPN', dnv_spn)]

ax = None
for (label, data) in labeled_data:

plots = plot(data.flux.xs(y=0.0, z=0.0, g=3), logy=True, ax=ax)
plots['plot'][0].set_label(label)
ax = plots['ax']

ax.set_xlabel("x [cm]")
ax.set_ylabel("Neutron flux [n/cm2-s]")
ax.set_title("Neutron flux : energy group 3")
ax.legend();

A.2.3 KOBAYASHI PROBLEM 1.II

This example compares Denovo results to published transport benchmark results [1].

Set up example environment
import os
from exnihilotools.matplotlib import screen_style

(continues on next page)

A–39

(continued from previous page)

%matplotlib inline
screen_style()
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")

A.2.3.1 Visualizing geometry

The geometry is loaded from the GG input file to create a raytrace imager for visualizing the geometry. The
from_extents method works for geometries that have bounding boxes (e.g., GG, SCALE, SWORD)..

from geometria import GG_Geometry
from omnibus.raytrace.imager import Imager
from omnibus.raytrace.load import load_gg

model = load_gg(os.path.join(SOURCE_DIR, "data", "kobp1.gg.omn"))
imager = Imager.from_extents(model.geometry, x=0, trace='cell')
imager.plot();

Generating Geometria XML input file from .gg.omn...
INFO: Starting Geometria preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/kobp1.gg.omn

...finished loading problem db from Omnibus ASCII file
INFO: Writing Geometria input ParameterList to kobp1.gg.xml

...finished generating Geometria XML input file from .gg.omn

A–40

A.2.3.2 Kobayashi Cross Sections

Now the Exnihilo python wrappers are used to generate analytic 1-group cross sections for the Kobayashi
problem. The Materials class is a simple working multigroup cross section library container.

import robus
import numpy as np
from nemesis import make_const_view
from transcore import XML_Writer

Create XS container
mats = robus.Materials()
mats.set_num_materials(4)

Define names and values
num_groups = 1
pn_order = 0
reactions = [robus.TOTAL, robus.SCATTERING]
totals = [0.0, 0.1, 1.0e-5, 0.1]
names = ['vaccum', 'region 1', 'region 2', 'region 3']
c = 0.5

Construct cross sections
for (i, tot_xs) in enumerate(totals):

mat = robus.Material_Downscatter(reactions, num_groups, pn_order)
total = np.array([tot_xs])
mat.set_sigma(make_const_view(total))
scat = np.array([[[c * tot_xs]]])
mat.set_sigma_s(make_const_view(scat))
mat.complete()
mats.set_material(i, mat)

mats.complete()

Write to XS input file
writer = XML_Writer(mats, "kobayashi_ii.xs.xml", names)
writer.write()

A.2.3.3 Execute Omnibus

Because the cross sections we generated are in the working directory, the Omnibus input files must also be
copied the working directory too, since paths in the input file are relative to the input file.

%cp {SOURCE_DIR}/data/denovo-kobayashi.omn .
%cp {SOURCE_DIR}/data/kobp1.gg.omn .
%cat denovo-kobayashi.omn

[PROBLEM]
name "Kobayashi Problem 1-ii"
mode forward

[MODEL=gg]
input "kobp1.gg.omn"

(continues on next page)

A–41

(continued from previous page)

[PHYSICS=mg]
pn_order 0
num_groups 1
neutron_bounds 2e7 1e-5 ! arbitrary
xml_path "kobayashi_ii.xs.xml"

[SOURCE=separable source]
q 1000.0
fis False

[SOURCE][SHAPE=box]
xmin 0.0
xmax 10.0
ymin 0.0
ymax 10.0
zmin 0.0
zmax 10.0

[SOURCE][ENERGY=histogram]
e 1e-05 2e7
p 1.0
pt n

[SOURCE][ANGLE=isotropic]

[DENOVO]
method sc
x 0.0 9i 100.0
y 0.0 9i 100.0
z 0.0 9i 100.0

[DENOVO][BOUNDARY=reflect]
reflect 1 0 1 0 1 0

[DENOVO][SOLVER=fixed]
tolerance 1e-03
[.][WITHIN_GROUP]
verbosity none

[DENOVO][QUADRATURE]
quadrature glproduct
construction product
num_azi 2
num_polar 2

[RUN=mpi]
np 4

!omnibus-run denovo-kobayashi.omn

A–42

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at denovo-kobayashi.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating Geometria XML input file from .gg.omn...
INFO: Starting Geometria preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/build/Exnihilo-examples/Exnihilo/packages/
↪→Omnibus/driver/example/denovo-kobayashi/kobp1.gg.omn

...finished loading problem db from Omnibus ASCII file
INFO: Renaming existing file kobp1.gg.xml to kobp1.gg-20200311-2236.xml
INFO: Writing Geometria input ParameterList to kobp1.gg.xml

...finished generating Geometria XML input file from .gg.omn
INFO: Set default for 'mode' to 'n' in '/physics/mg'
INFO: Set default for 'disable_upscattering' to 'False' in '/physics/mg'
INFO: Set default for 'load_scl' to 'False' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method sc` to `equations sc`
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'uncflux' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/upscatter'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/
↪→upscatter'
INFO: Set default for 'max_iterations' to '1000' in '/denovo/solver/upscatter'
INFO: Set default for 'verbosity' to 'low' in '/denovo/solver/upscatter'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 1000 cells
INFO: Writing Omnibus input ParameterList to denovo-kobayashi.inp.xml
INFO: Writing preprocessed file to denovo-kobayashi.pp.json

(continues on next page)

A–43

(continued from previous page)

INFO: Writing processed ASCII input to 'denovo-kobayashi.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: No composition data is present in the GG model at '/rnsdhpc/code/build/Exnihilo-
↪→examples/Exnihilo/packages/Omnibus/driver/example/denovo-kobayashi/kobp1.gg.xml'
INFO: Creating default boundary mesh from (0 0 0) to (100 100 100) for GG geometry
Building physics 'mg'
Building sources
Building Denovo solver internals
Ray tracing Denovo mesh
Mixing Denovo cross sections
Building Denovo sources
Constructing forward sources for Denovo
Initializing Denovo solver
INFO: Constructing Denovo state vector with 1 groups, 1000 cells, 1 moments, 1 unknowns␣
↪→per cell
Running Denovo transport calculation
INFO: Writing Silo file to 4 concurrent files using material volume fractions
Writing Denovo HDF5 output
Run complete
Cleaning up
Forward group 0 finished in 6 Belos Block GMRES iterations in 1 s...

...finished running Omnibus in 1.2 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-kobayashi.out.h5', problem name 'Kobayashi␣
↪→Problem 1-ii', created on 2020MAR11 22:36 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-kobayashi.out.h5', problem name 'Kobayashi␣
↪→Problem 1-ii', created on 2020MAR11 22:36 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-kobayashi.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-kobayashi.rst

...finished building RST summary

The run generates several files, including an HDF5 file with the denovo solution data and a ReStructured Text
file that summarizes the problem run.

A–44

assert os.path.exists("denovo-kobayashi.out.h5")

A.2.3.4 Check the source term

Verifying the computational input is an important step in analysis. Plotting the source region (again only in
group zero) reveals that it has a single nonzero source mesh cell.

Since this is a one-group problem, it is easier to extract group zero at the beginning. Clearing the hyperslice
field reduces clutter by discarding the metadata that this source object is group zero.

from omnibus.formats.output import load

dnv = load("denovo-kobayashi.out.h5")['denovo'].extract()

source = dnv.source.xs(g=0)
source.hyperslice = []
source

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-kobayashi.out.h5', problem name 'Kobayashi␣
↪→Problem 1-ii', created on 2020MAR11 22:36 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

from omnibus.data import plot

print(np.count_nonzero(source))
plot(source.xs(x=5.0));

1

A–45

A.2.3.5 Visualize the flux

flux = dnv.flux.xs(g=0)
flux.hyperslice = []
flux

This code plots a lineout along the z axis in the cell where x = y = 5:

plots = plot(flux.xs(x=5, y=5), logy=True)
ax = plots['ax']
ax.set_title(ax.get_ylabel())
ax.set_ylabel("Particle flux (p/cm^2-s)");

A–46

A pseudocolor plot can visualize the flux. The options on the matplotlib LogNorm class constrain the range
of the color scale.

from matplotlib.colors import LogNorm

norm = LogNorm(vmin=1e-6, vmax=1)
plot(flux.xs(z=5.0), norm=norm);
plot(flux.xs(x=5.0), norm=norm);

A–47

Compare against reference solutions

The reference data in the Kobayashi paper are point samples formatted as (x, y, z, φ). They comprise three
lineouts: one along y, one along x = y = z, and one along x.

A–48

from six.moves import StringIO
import numpy as np

X, Y, Z, reference
ref_y = """
5 5 5 8.29260E+00
5 15 5 1.87028E+00
5 25 5 7.13986E-01
5 35 5 3.84685E-01
5 45 5 2.53984E-01
5 55 5 1.37220E-01
5 65 5 4.65913E-02
5 75 5 1.58766E-02
5 85 5 5.47036E-03
5 95 5 1.85082E-03
"""
ref_xyz = """
5 5 5 8.29260E+00
15 15 15 6.63233E-01
25 25 25 2.68828E-01
35 35 35 1.56683E-01
45 45 45 1.04405E-01
55 55 55 3.02145E-02
65 65 65 4.06555E-03
75 75 75 5.86124E-04
85 85 85 8.66059E-05
95 95 95 1.12892E-05
"""
ref_x = """
5 55 5 1.37220E-01
15 55 5 1.27890E-01
25 55 5 1.13582E-01
35 55 5 9.59578E-02
45 55 5 7.82701E-02
55 55 5 5.67030E-02
65 55 5 1.88631E-02
75 55 5 6.46624E-03
85 55 5 2.28099E-03
95 55 5 7.93924E-04
"""
ref_y = np.loadtxt(StringIO(ref_y))
ref_xyz = np.loadtxt(StringIO(ref_xyz))
ref_x = np.loadtxt(StringIO(ref_x))

Since these are all physical points, it is easy to use the meshes to look up the points where the reference data
is using the xs method.

import matplotlib.pyplot as plt

Get a line-out of the actual flux
x_phi = flux.xs(y=55, z=5)
Extract calculated points along the coordinate mesh

(continues on next page)

A–49

(continued from previous page)

x_mesh = ref_x[:,0]
act = np.array([x_phi.xs(x=x).data for x in x_mesh])
Get the reference values
ref = ref_x[:,3]

(fig, (flux_ax, ratio_ax)) = plt.subplots(2, 1, figsize=(4, 4), sharex=True)
Plot the actual lineout
plot(x_phi, ax=flux_ax)
Plot the ratios
ratio_ax.plot(x_mesh, act/ref - 1)

flux_ax.set_ylabel(r'ϕ')
ratio_ax.set_xlabel("x (cm)")
ratio_ax.set_ylabel(r"$\phi / \phi_{\mathrm{ref}} - 1$");

axis = ref_y[:,1]
y_phi = flux.xs(x=5, z=5)
act = np.array([y_phi.xs(y=y).data for y in axis])
ref = ref_y[:,3]

(fig, ax) = plt.subplots()
ax.plot(axis, act/ref - 1)
ax.set_xlabel("y (cm)")
ax.set_ylabel("$\phi / \phi_{\mathrm{ref}} - 1$");

A–50

axis = ref_xyz[:,0]
act = np.array([flux.xs(x=v, y=v, z=v).data for v in axis])
ref = ref_xyz[:,3]

(fig, ax) = plt.subplots()
ax.plot(axis, act/ref - 1)
ax.set_xlabel("xyz (cm)")
ax.set_ylabel("$\phi / \phi_{\mathrm{ref}} - 1$");

A–51

A.2.4 UEKI BENCHMARK PROBLEM

This example uses Denovo to determine a dose rate to the detector, and it demonstrates using the adjoint
solution capability to obtain an importance function. Since this problem also contains a point source, it shows
how an “uncollided flux” treatment can reduce ray effects. Two approximation methods for the uncollided
flux source (uncf) will be explored: the “analytic” approximation, where the source is physically raytraced to
every computational cell in the geometry; and a Monte Carlo approximation, where numerous samples from
a stochastic point source generate the deterministic source term.

Set up example environment
import os
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")
%matplotlib inline
from exnihilotools.matplotlib import screen_style
screen_style()

A.2.4.1 Pre-visualize the geometry

The [PLOT][PRE] block in the input file generates a 2D image of the problem geometry for visualizing
before actually executing the problem.

The Ueki problem consists of a neutron source is placed at the center of a block of paraffin with a 45 degree
cone-shaped opening at the front. This opening points toward a graphite shield of varying thickness, with an
ideal detector on the far side.

!grep -A 5 "\[PRE\]" {SOURCE_DIR}/data/denovo-ueki-adj.omn
!omnibus-pre {SOURCE_DIR}/data/denovo-ueki-adj.omn

[PRE]
[PRE][PLOT lateral]
origin -25 0 -40
size 127.5 80
axis y
render true
INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ueki-adj.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...
MCNP: xact is done ...finished generating MCNP runtpe file
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method sc` to `equations sc`

(continues on next page)

A–52

(continued from previous page)

INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'quadrature' to 'qr' in '/denovo/quadrature'
INFO: Set default for 'construction' to 'product' in '/denovo/quadrature'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'uncflux' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 4950 cells
INFO: Writing Omnibus input ParameterList to denovo-ueki-adj.inp.xml
>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
Generating geometry image...
INFO: Saved geometry image at y=0 to 'lateral_y0.png'

...finished generating geometry image
INFO: Writing preprocessed file to denovo-ueki-adj.pp.json

from IPython.display import display, Image
display(Image(filename="lateral_y0.png"))

A–53

A.2.4.2 Analytic uncollided flux results

The uncollided flux from a point source is the solution to a purely absorbing transport equation in each group:

Ω · ∇ψ̂g + σgψ̂g =
qg

4π
δ(r − r0).

This equation has a simple Green’s function solution:

ψ̂g = δ(Ω −Ω0→r)
qg

4π|r − r0|2
e−τ(r0,r).

Denovo calculates the total optical thickness τ between the point source and every point on the grid cell, and
using the source spectrum, constructs an analytic solution to the first-collision source. The uncf analytic
option in the [DENOVO][SOURCE] block enables this feature.

%cat {SOURCE_DIR}/data/denovo-ueki-fwd-uncf-analytic.omn

[PROBLEM]
name "Ueki 30cm benchmark (analytic forward source)"
mode forward

[MODEL=mcnp]
input "../data/ueki.mcnp"

[SOURCE=separable cf252]
strength 4.05e7 ! neutrons/sec

(continues on next page)

A–54

(continued from previous page)

[SOURCE][SHAPE=point]
point 0.001 0 0

[SOURCE][ENERGY=watt]
a 1.025
b 2.926

[SOURCE][ANGLE=isotropic]

[PHYSICS=mg]
mg_lib "v7-28n19g"
pn_order 1
disable_upscattering true

[DENOVO]
method sc
x -25 5i 0 5i 60 5i 90 3i 112.5
y -40 2i -25 2i -2.5 2i 2.5 2i 25 2i 40
z -40 2i -25 2i -2.5 2i 2.5 2i 25 2i 40

[DENOVO][SOLVER=fixed]
[.][WITHIN_GROUP]
verbosity none

[DENOVO][SOURCE]
uncf analytic

[DENOVO][QUADRATURE]
num_azi 2
num_polar 2

[RUN=mpi]
np 4

!omnibus-run {SOURCE_DIR}/data/denovo-ueki-fwd-uncf-analytic.omn

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ueki-fwd-uncf-analytic.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
INFO: Set default for 'fissionable_only' to 'False' in '/source/cf252'
INFO: Set default for 'mode' to 'n' in '/physics/mg'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'

(continues on next page)

A–55

(continued from previous page)

WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method sc` to `equations sc`
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'quadrature' to 'qr' in '/denovo/quadrature'
INFO: Set default for 'construction' to 'product' in '/denovo/quadrature'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'uncflux' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 4950 cells
INFO: Writing Omnibus input ParameterList to denovo-ueki-fwd-uncf-analytic.inp.xml
INFO: Writing preprocessed file to denovo-ueki-fwd-uncf-analytic.pp.json
INFO: Writing processed ASCII input to 'denovo-ueki-fwd-uncf-analytic.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
INFO: Splitting compound 6000 into at% {6012: 0.9893, 6013: 0.0107}
INFO: Splitting compound 3006000 into at% {3006012: 0.9893, 3006013: 0.0107}
WARNING: Extents of MCNP geometry are extremely large or unknown; this may adversely␣
↪→affect 'global' tallies, entropy mesh, etc.
Building physics 'mg'
INFO: Loading AMPX library at '/usr/local/scale/data/scale.rev12.xn28g19v7.1'
INFO: Retained 3 of 455 nuclides on the master AMPX library
INFO: Running XSProc on 2 cells
WARNING: Upscattering has been lumped into within-group scattering in the thermal groups
WARNING: Remapped 4 nuclide IDs: 6012->6000, 6013->6000, 3006012->3006000, 3006013->
↪→3006000
INFO: Truncating cross sections to groups [0, 28)
Building sources
Building Denovo solver internals
Ray tracing Denovo mesh
WARNING: Number of Z blocks (2) is not divisible into the number of z cells 15; reducing␣
↪→to 1 (continues on next page)

A–56

(continued from previous page)

Mixing Denovo cross sections
Building Denovo sources
Constructing forward sources for Denovo
Initializing Denovo solver
INFO: Constructing Denovo state vector with 28 groups, 4950 cells, 4 moments, 1 unknowns␣
↪→per cell
Performing analytic first-collision source calculation on 1 sources
Running Denovo transport calculation
Forward group 0 finished in 4 Belos Block GMRES iterations.
Forward group 1 finished in 4 Belos Block GMRES iterations.
Forward group 2 finished in 4 Belos Block GMRES iterations.
Forward group 3 finished in 3 Belos Block GMRES iterations.
Forward group 4 finished in 4 Belos Block GMRES iterations.
Forward group 5 finished in 5 Belos Block GMRES iterations.
Forward group 6 finished in 5 Belos Block GMRES iterations.
Forward group 7 finished in 6 Belos Block GMRES iterations.
Forward group 8 finished in 6 Belos Block GMRES iterations.
Forward group 9 finished in 6 Belos Block GMRES iterations.
Forward group 10 finished in 6 Belos Block GMRES iterations.
Forward group 11 finished in 5 Belos Block GMRES iterations.
Forward group 12 finished in 4 Belos Block GMRES iterations.
Forward group 13 finished in 4 Belos Block GMRES iterations.
Forward group 14 finished in 4 Belos Block GMRES iterations.
Forward group 15 finished in 4 Belos Block GMRES iterations.
Forward group 16 finished in 3 Belos Block GMRES iterations.
Forward group 17 finished in 3 Belos Block GMRES iterations.
Forward group 18 finished in 3 Belos Block GMRES iterations.
Forward group 19 finished in 3 Belos Block GMRES iterations.
Forward group 20 finished in 4 Belos Block GMRES iterations.
Forward group 21 finished in 4 Belos Block GMRES iterations.
Forward group 22 finished in 4 Belos Block GMRES iterations.
Forward group 23 finished in 6 Belos Block GMRES iterations.
Forward group 24 finished in 8 Belos Block GMRES iterations.
Forward group 25 finished in 9 Belos Block GMRES iterations.
Forward group 26 finished in 13 Belos Block GMRES iterations.
INFO: Writing Silo file to 4 concurrent files using material volume fractions
Writing Denovo HDF5 output
Run complete
Cleaning up
Forward group 27 finished in 39 Belos Block GMRES iterations.

...finished running Omnibus in 3.3 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-fwd-uncf-analytic.out.h5', problem␣
↪→name 'Ueki 30cm benchmark (analytic forward source)', created on 2020MAR11 22:36 using␣
↪→SCALE version 6.3.pre-b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-fwd-uncf-analytic.out.h5', problem␣
↪→name 'Ueki 30cm benchmark (analytic forward source)', created on 2020MAR11 22:36 using␣
↪→SCALE version 6.3.pre-b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
(continues on next page)

A–57

(continued from previous page)

Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-ueki-fwd-uncf-analytic.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-ueki-fwd-uncf-analytic.rst

...finished building RST summary

The first-collision method works by splitting the transport equation into uncollided and collided flux compo-
nents. The uncollided flux is solved using an analytic approximation. Visualizing the uncollided flux term
helps in verifying the problem setup.

from omnibus.data import plot
from omnibus.formats.output import load

dnv = load("denovo-ueki-fwd-uncf-analytic.out.h5")['denovo'].extract()
uncflux = dnv['uncflux']
for g in (2, 5):

plots = plot(uncflux.xs(y=0.0, z=0.0, g=g), logy=True)
ax = plots['ax']
ax.set_title(ax.get_ylabel())
ax.set_ylabel("Uncollided flux (n/cm2-s)")
ax.title.set_position([.5, 1.05]);

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-fwd-uncf-analytic.out.h5', problem␣
↪→name 'Ueki 30cm benchmark (analytic forward source)', created on 2020MAR11 22:36 using␣
↪→SCALE version 6.3.pre-b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

A–58

uncf_slice = uncflux.xs(g=2,z=0.0)
print("Flux spans {:.2e} to {:.2e}".format(

uncf_slice.data.min(),
uncf_slice.data.max()))

Flux spans 8.63e-04 to 2.39e+05

Pseudocolor plots show the attenuation of the source term through the material and through space. Since the
material cross sections depend on energy group, the shape of the uncollided flux terms is different in groups 2
and 5.

from matplotlib.colors import LogNorm

norm = LogNorm(vmin=1.0e-5, vmax=1e5)
for g in (2, 5):

plots = plot(uncflux.xs(g=g,z=0.0), norm=norm)
plots['ax'].title.set_position([.5, 1.25]);

A–59

The flux along the x axis in energy group 2 follows the uncollided flux contribution but also includes
inscattering in the material from the higher-energy groups.

plots = plot(dnv['flux'].xs(g=2, y=0, z=0), logy=True)
ax = plots['ax']
ax.set_title(ax.get_ylabel())
ax.set_ylabel("Neutron flux (n/cm2-s)")
ax.title.set_position([.5, 1.05]);

A–60

A.2.4.3 Calculate dose rates

The SCALE master library contains American National Standards Institute (ANSI) standard (1977) neutron
flux-to-dose conversion factors (rem/hr)/(n/cm^2-s) (MT 9029). The PALEALE code module can be used to
print out these conversion factors from the SCALE AMPX library.

import numpy as np
neutron flux-to-dose conversion factors from ansl/ans 6.1.1 - 1977 02/09/11 (rem/hr)/
↪→(n/cm^2-s)
flux_to_dose_factor = np.array([

1.61496E-04, 1.44530E-04, 1.27035E-04, 1.28101E-04, 1.29832E-04, 1.00375E-04,
4.53982E-05, 1.19215E-05, 3.72975E-06, 3.71969E-06, 4.00846E-06, 4.29442E-06,
4.47304E-06, 4.55834E-06, 4.57702E-06, 4.55983E-06, 4.52102E-06, 4.48745E-06,
4.46602E-06, 4.43429E-06, 4.33168E-06, 4.20288E-06, 4.09745E-06, 3.84414E-06,
3.66980E-06, 3.67484E-06, 3.67484E-06, 3.67484E-06

])

print("The Denovo output has", len(dnv['flux'].axis('g')), "neutron energy bounds:")
print(dnv['flux'].axis('g').bounds.n.tolist())

The Denovo output has 28 neutron energy bounds:
[20000000.0, 6376300.0, 3011900.0, 1826800.0, 1422700.0, 907180.0, 407620.0, 111090.0,␣
↪→15034.0, 3035.39990234375, 582.9500122070312, 101.30000305175781, 29.023000717163086,␣
↪→10.677000045776367, 5.0, 3.059000015258789, 1.8553999662399292, 1.2999999523162842, 1.
↪→1253000497817993, 1.0, 0.800000011920929, 0.41398999094963074, 0.32499998807907104, 0.
↪→22499999403953552, 0.10000000149011612, 0.05000000074505806, 0.029999999329447746, 0.
↪→009999999776482582, 9.999999747378752e-06]

from omnibus.data import Field

def weighted_energy_integrate(flux, weights, **kwargs):
assert len(flux.axis('g')) == len(weights)
assert flux.dims[0] == 'g'

(continues on next page)

A–61

(continued from previous page)

axes = flux.axes[1:]
result_data = np.zeros([len(ax) for ax in axes])
result = Field(axes=axes, data=result_data, **kwargs)

Perform weighted integral
flux_data = flux.data
for g in range(len(flux.axis('g'))):

result_data += weights[g] * flux_data[g]

return result

dose = weighted_energy_integrate(dnv['flux'], flux_to_dose_factor, name='dose', units=
↪→'rem/hr')

The 3D field of doses can be visualized by extracting lineouts or by coloring slices.

plots = plot(dose.xs(y=0, z=0), logy=True)
ax = plots['ax']
ax.set_ylabel("Dose [rem/hr]")

plots = plot(dose.xs(z=0.0), norm=LogNorm())
plots['ax'].title.set_position([.5, 1.25]);

A–62

A.2.4.4 Monte Carlo uncollided flux results

With the Monte Carlo approach, the first collision source (uncollided flux) is obtained by direct Monte Carlo
sampling. Thus the resulting uncollided flux fluctuates around the mean. As the number of Monte Carlo
particles simulated increases, the uncollided flux obtained from the Monte Carlo approach should approach
the analytic uncollided flux. The uncf mc option in the [DENOVO][SOURCE] block enables this feature.

%cat {SOURCE_DIR}/data/denovo-ueki-fwd-uncf-mc.omn

[PROBLEM]
name "Ueki 30cm benchmark (MC forward source)"
mode forward

[MODEL=mcnp]
input "../data/ueki.mcnp"

[SOURCE=separable cf252]
strength 4.05e7 ! neutrons/sec

[SOURCE][SHAPE=point]
point 0.001 0 0

[SOURCE][ENERGY=watt]
a 1.025
b 2.926

[SOURCE][ANGLE=isotropic]

[PHYSICS=mg]
mg_lib "v7-28n19g"

(continues on next page)

A–63

(continued from previous page)

pn_order 1
disable_upscattering true

[DENOVO]
method sc
x -25 5i 0 5i 60 5i 90 3i 112.5
y -40 2i -25 2i -2.5 2i 2.5 2i 25 2i 40
z -40 2i -25 2i -2.5 2i 2.5 2i 25 2i 40

[DENOVO][SOLVER=fixed]
[.][WITHIN_GROUP]
verbosity none

[DENOVO][OUTPUT]

[DENOVO][SOURCE]
uncf mc
mc_num_particles 50000

[DENOVO][QUADRATURE]
num_azi 2
num_polar 2

[RUN=mpi]
np 4

!omnibus-run {SOURCE_DIR}/data/denovo-ueki-fwd-uncf-mc.omn

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ueki-fwd-uncf-mc.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
INFO: Set default for 'fissionable_only' to 'False' in '/source/cf252'
INFO: Set default for 'mode' to 'n' in '/physics/mg'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method sc` to `equations sc`
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'quadrature' to 'qr' in '/denovo/quadrature'
INFO: Set default for 'construction' to 'product' in '/denovo/quadrature'
INFO: Set default for 'mat' to 'True' in '/denovo/output'

(continues on next page)

A–64

(continued from previous page)

INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'uncflux' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 4950 cells
INFO: Writing Omnibus input ParameterList to denovo-ueki-fwd-uncf-mc.inp.xml
INFO: Writing preprocessed file to denovo-ueki-fwd-uncf-mc.pp.json
INFO: Writing processed ASCII input to 'denovo-ueki-fwd-uncf-mc.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
INFO: Renaming existing file omnibus.out to omnibus-20200311-2236.out
INFO: Renaming existing file omnibus.err to omnibus-20200311-2236.err
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
INFO: Splitting compound 6000 into at% {6012: 0.9893, 6013: 0.0107}
INFO: Splitting compound 3006000 into at% {3006012: 0.9893, 3006013: 0.0107}
WARNING: Extents of MCNP geometry are extremely large or unknown; this may adversely␣
↪→affect 'global' tallies, entropy mesh, etc.
Building physics 'mg'
INFO: Loading AMPX library at '/usr/local/scale/data/scale.rev12.xn28g19v7.1'
INFO: Retained 3 of 455 nuclides on the master AMPX library
INFO: Running XSProc on 2 cells
WARNING: Upscattering has been lumped into within-group scattering in the thermal groups
WARNING: Remapped 4 nuclide IDs: 6012->6000, 6013->6000, 3006012->3006000, 3006013->
↪→3006000
INFO: Truncating cross sections to groups [0, 28)
Building sources
Building Denovo solver internals
Ray tracing Denovo mesh
WARNING: Number of Z blocks (2) is not divisible into the number of z cells 15; reducing␣
↪→to 1
Mixing Denovo cross sections
Building Denovo sources
Constructing forward sources for Denovo
Initializing Denovo solver
INFO: Constructing Denovo state vector with 28 groups, 4950 cells, 4 moments, 1 unknowns␣
↪→per cell (continues on next page)

A–65

(continued from previous page)

Performing Monte Carlo first-collision source calculation
Running Denovo transport calculation
Forward group 0 finished in 3 Belos Block GMRES iterations.
Forward group 1 finished in 4 Belos Block GMRES iterations.
Forward group 2 finished in 4 Belos Block GMRES iterations.
Forward group 3 finished in 3 Belos Block GMRES iterations.
Forward group 4 finished in 4 Belos Block GMRES iterations.
Forward group 5 finished in 4 Belos Block GMRES iterations.
Forward group 6 finished in 5 Belos Block GMRES iterations.
Forward group 7 finished in 6 Belos Block GMRES iterations.
Forward group 8 finished in 6 Belos Block GMRES iterations.
Forward group 9 finished in 6 Belos Block GMRES iterations.
Forward group 10 finished in 5 Belos Block GMRES iterations.
Forward group 11 finished in 5 Belos Block GMRES iterations.
Forward group 12 finished in 4 Belos Block GMRES iterations.
Forward group 13 finished in 4 Belos Block GMRES iterations.
Forward group 14 finished in 4 Belos Block GMRES iterations.
Forward group 15 finished in 4 Belos Block GMRES iterations.
Forward group 16 finished in 3 Belos Block GMRES iterations.
Forward group 17 finished in 3 Belos Block GMRES iterations.
Forward group 18 finished in 3 Belos Block GMRES iterations.
Forward group 19 finished in 3 Belos Block GMRES iterations.
Forward group 20 finished in 4 Belos Block GMRES iterations.
Forward group 21 finished in 4 Belos Block GMRES iterations.
Forward group 22 finished in 4 Belos Block GMRES iterations.
Forward group 23 finished in 6 Belos Block GMRES iterations.
Forward group 24 finished in 7 Belos Block GMRES iterations.
Forward group 25 finished in 8 Belos Block GMRES iterations.
Forward group 26 finished in 13 Belos Block GMRES iterations.
INFO: Writing Silo file to 4 concurrent files using material volume fractions
INFO: Removing SILO directory denovo_output_silo
Writing Denovo HDF5 output
Forward group 27 finished in 39 Belos Block GMRES iterations.
Run complete
Cleaning up

...finished running Omnibus in 3.7 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-fwd-uncf-mc.out.h5', problem name
↪→'Ueki 30cm benchmark (MC forward source)', created on 2020MAR11 22:36 using SCALE␣
↪→version 6.3.pre-b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-fwd-uncf-mc.out.h5', problem name
↪→'Ueki 30cm benchmark (MC forward source)', created on 2020MAR11 22:36 using SCALE␣
↪→version 6.3.pre-b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-ueki-fwd-uncf-mc.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-ueki-fwd-uncf-mc.rst

(continues on next page)

A–66

(continued from previous page)

...finished building RST summary

dnv_mc = load("denovo-ueki-fwd-uncf-mc.out.h5")['denovo'].extract()

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-fwd-uncf-mc.out.h5', problem name
↪→'Ueki 30cm benchmark (MC forward source)', created on 2020MAR11 22:36 using SCALE␣
↪→version 6.3.pre-b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

Here the uncollided flux is solved using the Monte Carlo approximation. Note that unlike the smooth exponen-
tial shape calculated by the analytic method, the MC approximation has statistical error (the uncollided term
abruptly drops to zero in undersampled regions far from the source). The shapes for each group uncollided
flux are similar because the energy discretization on the source is performed separately from the spatial
tracking.

fc_source_mc = dnv_mc['uncflux']

ax = None;
for g in range(4):

plots = plot(fc_source_mc.xs(y=0.0,z=0.0,g=g), logy=True, ax=ax)
ax = plots['ax']
plots['plot'][0].set_label(fc_source_mc.axis('g').describe_index(g))

ax.legend(loc='lower right')
ax.set_title("")
ax.set_ylabel("Uncollided flux [n/cm2-s]");

norm = LogNorm(vmin=1e-4,vmax=1e6)
plots = plot(fc_source_mc.xs(g=2,z=0.0), norm=norm)
plots['ax'].title.set_position([.5, 1.25]);

A–67

A comparison of the calculated doses for the analytic and Monte Carlo solutions show good agreement away
from the source, modulo some statistical noice.

dose_mc = weighted_energy_integrate(dnv_mc['flux'], flux_to_dose_factor,
name='dose', units='rem/hr')

plots = plot(dose_mc.xs(y=0,z=0), logy=True)
plots['plot'][0].set_label("MC")

(continues on next page)

A–68

(continued from previous page)

ax = plots['ax']

plots = plot(dose.xs(y=0,z=0), logy=True, ax=ax)
plots['plot'][0].set_label("Analytic")

ax.set_ylabel("Dose [rem/hr]")
ax.set_title("Centerline dose rate")
ax.legend();

A.2.4.5 Adjoint solutions

The solution of the adjoint transport equation (adjoint flux) is the expected contribution from the neutron
source to the detector. In other words, the adjoint flux is a measurement of the importance of a particle’s
contribution to the detector tally.

%cat {SOURCE_DIR}/data/denovo-ueki-adj.omn

[PROBLEM]
name "Ueki 30cm benchmark (adjoint solution)"
mode adjoint
adjoint_source tally

[MODEL=mcnp]
input "../data/ueki.mcnp"
autoname
extents -25 112.5 -40 40 -40 40 ! Bounding box

[TALLY]

(continues on next page)

A–69

(continued from previous page)

[TALLY][CELL response]
cells 3

[PHYSICS=mg]
mg_lib "v7-28n19g"
mode n
pn_order 0
disable_upscattering true

[DENOVO]
method sc
x -25 5i 0 5i 60 5i 90 3i 112.5
y -40 2i -25 2i -2.5 2i 2.5 2i 25 2i 40
z -40 2i -25 2i -2.5 2i 2.5 2i 25 2i 40

[DENOVO][SOLVER=fixed]

[.][WITHIN_GROUP]
verbosity none
max_iterations 10

[DENOVO][QUADRATURE]
num_azi 2
num_polar 2

[RUN=mpi]
np 4

[PRE]
[PRE][PLOT lateral]
origin -25 0 -40
size 127.5 80
axis y
render true

!omnibus-run {SOURCE_DIR}/data/denovo-ueki-adj.omn

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/denovo-ueki-adj.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
>>> Loading nuclide data from processed MCNP libraries
>>> Loading compositions from MCNP input
>>> Loading nuclide data from processed MCNP libraries

(continues on next page)

A–70

(continued from previous page)

>>> Loading compositions from MCNP input
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
WARNING: The 'method' keyword is now 'equations' for SN discretization types. Changing␣
↪→`method sc` to `equations sc`
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 2' and 'y_blocks 2'
INFO: Set default for 'z_blocks' to '2' in '/denovo/decomposition'
INFO: Set default for 'quadrature' to 'qr' in '/denovo/quadrature'
INFO: Set default for 'construction' to 'product' in '/denovo/quadrature'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'uncflux' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group'
INFO: Global Denovo mesh has 4950 cells
INFO: Renaming existing file denovo-ueki-adj.inp.xml to denovo-ueki-adj.inp-20200311-2236.
↪→xml
INFO: Writing Omnibus input ParameterList to denovo-ueki-adj.inp.xml
>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
Generating geometry image...
INFO: Saved geometry image at y=0 to 'lateral_y0.png'

...finished generating geometry image
INFO: Renaming existing file denovo-ueki-adj.pp.json to denovo-ueki-adj.pp-20200311-2236.
↪→json
INFO: Writing preprocessed file to denovo-ueki-adj.pp.json
INFO: Writing processed ASCII input to 'denovo-ueki-adj.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
INFO: Renaming existing file omnibus.out to omnibus-20200311-2236a.out
INFO: Renaming existing file omnibus.err to omnibus-20200311-2236a.err
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
INFO: Splitting compound 6000 into at% {6012: 0.9893, 6013: 0.0107}
INFO: Splitting compound 3006000 into at% {3006012: 0.9893, 3006013: 0.0107}

(continues on next page)

A–71

(continued from previous page)

INFO: Creating default boundary mesh from (-25 -40 -40) to (112.5 40 40) for MCNP␣
↪→geometry
Building physics 'mg'
INFO: Loading AMPX library at '/usr/local/scale/data/scale.rev12.xn28g19v7.1'
INFO: Retained 3 of 455 nuclides on the master AMPX library
INFO: Running XSProc on 2 cells
WARNING: Upscattering has been lumped into within-group scattering in the thermal groups
WARNING: Remapped 4 nuclide IDs: 6012->6000, 6013->6000, 3006012->3006000, 3006013->
↪→3006000
INFO: Truncating cross sections to groups [0, 28)
Building tallies
Building Denovo solver internals
Ray tracing Denovo mesh
WARNING: Number of Z blocks (2) is not divisible into the number of z cells 15; reducing␣
↪→to 1
Mixing Denovo cross sections
Building Denovo sources
Constructing adjoint sources for Denovo
WARNING: Tally 'response' has no multiplier specified in the HYBRID block; a flat␣
↪→adjoint spectrum will be used
Discretizing adjoint sources (1 cell tallies)
Initializing Denovo solver
INFO: Constructing Denovo state vector with 28 groups, 4950 cells, 1 moments, 1 unknowns␣
↪→per cell
Running Denovo transport calculation
Adjoint group 27 finished in 5 Belos Block GMRES iterations.
Adjoint group 26 finished in 5 Belos Block GMRES iterations.
Adjoint group 25 finished in 5 Belos Block GMRES iterations.
Adjoint group 24 finished in 5 Belos Block GMRES iterations.
Adjoint group 23 finished in 4 Belos Block GMRES iterations.
Adjoint group 22 finished in 3 Belos Block GMRES iterations.
Adjoint group 21 finished in 3 Belos Block GMRES iterations.
Adjoint group 20 finished in 3 Belos Block GMRES iterations.
Adjoint group 19 finished in 3 Belos Block GMRES iterations.
Adjoint group 18 finished in 2 Belos Block GMRES iterations.
Adjoint group 17 finished in 2 Belos Block GMRES iterations.
Adjoint group 16 finished in 3 Belos Block GMRES iterations.
Adjoint group 15 finished in 3 Belos Block GMRES iterations.
Adjoint group 14 finished in 3 Belos Block GMRES iterations.
Adjoint group 13 finished in 3 Belos Block GMRES iterations.
Adjoint group 12 finished in 4 Belos Block GMRES iterations.
Adjoint group 11 finished in 4 Belos Block GMRES iterations.
Adjoint group 10 finished in 4 Belos Block GMRES iterations.
Adjoint group 9 finished in 4 Belos Block GMRES iterations.
Adjoint group 8 finished in 4 Belos Block GMRES iterations.
Adjoint group 7 finished in 4 Belos Block GMRES iterations.
Adjoint group 6 finished in 4 Belos Block GMRES iterations.
Adjoint group 5 finished in 3 Belos Block GMRES iterations.
Adjoint group 4 finished in 3 Belos Block GMRES iterations.
Adjoint group 3 finished in 2 Belos Block GMRES iterations.
Adjoint group 2 finished in 3 Belos Block GMRES iterations.
INFO: Writing Silo file to 4 concurrent files using material volume fractions

(continues on next page)

A–72

(continued from previous page)

INFO: Removing SILO directory denovo_output_silo
Writing Denovo HDF5 output
Run complete
Cleaning up
Adjoint group 1 finished in 3 Belos Block GMRES iterations.
Adjoint group 0 finished in 3 Belos Block GMRES iterations.

...finished running Omnibus in 2.7 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-adj.out.h5', problem name 'Ueki 30cm␣
↪→benchmark (adjoint solution)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-
↪→b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-adj.out.h5', problem name 'Ueki 30cm␣
↪→benchmark (adjoint solution)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-
↪→b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to denovo-ueki-adj.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to denovo-ueki-adj.rst

...finished building RST summary

dnv = load("denovo-ueki-adj.out.h5")['denovo'].extract()
adj_flux = dnv['flux'].copy()
adj_flux.name ='adjoint_flux'

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'denovo-ueki-adj.out.h5', problem name 'Ueki 30cm␣
↪→benchmark (adjoint solution)', created on 2020MAR11 22:37 using SCALE version 6.3.pre-
↪→b10 (branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

Plotting the adjoint flux shows how likely it is for particles at each point in space to contribute to the detector.
Denovo predicts that the flux is of lowest importance in the paraffin block and of highest importance behind
the graphite shield.

plots = plot(adj_flux.xs(g=2,z=0.0), norm=norm)
plots['ax'].title.set_position([.5, 1.25]);

A–73

A.2.5 DENOVO/SWORD INTEGRATION

This example demonstrates how to load and visualize a SWORD input file, create an Omnibus Denovo input
for it that writes the angular flux and current, and post-process the output.

Set up example environment
import os
from exnihilotools.matplotlib import screen_style
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")
%matplotlib inline
screen_style()

A.2.5.1 Visualize a GDML geometry

Loading a SWORD geometry reads a set of XML input files and calls Geant4 initialization routines to load a
corresponding GDML geometry input.

from omnibus.raytrace.load import load_sword
model = load_sword(os.path.join(SOURCE_DIR, "data", "btest5", "btest5.sword"))

Generating serialized SWORD model...
INFO: Writing packed model to btest5.xdr

...finished generating serialized SWORD model

Omnibus includes tools to create color schemes based on the phyical compositions of the problem. The
ColorMap.from_compositions method automatically assigns colors for common real-life materials such
as air, carbon-based life forms, and detector materials. The individual compositions from the model can also
be explored to validate that Denovo is seeing the right nuclides, weight fractions, etc.

from omnibus.raytrace.colors import ColorMap
colors = ColorMap.from_compositions(model.compositions)
colors.comps[1]._asdict()

A–74

{'name': 'PMT_innerMetals',
'matid': 1,
'density': 0.7,
'temperature': 293.15,
'zaid': array([6012, 6013, 13027, 15031, 16032, 16033, 16034, 16036, 24050,

24052, 24053, 24054, 25055, 26054, 26056, 26057, 26058, 28058,
28060, 28061, 28062, 28064, 29063, 29065, 42092, 42094, 42095,
42096, 42097, 42098, 42100], dtype=uint32),

'wtfrac': array([2.96790000e-05, 3.21000000e-07, 2.50000000e-01, 5.00000000e-05,
4.74650000e-05, 3.80000000e-07, 2.14500000e-06, 1.00000000e-08,
7.82100000e-04, 1.50820200e-02, 1.71018000e-03, 4.25700000e-04,
1.70000000e-03, 4.11312650e-03, 6.45672898e-02, 1.49114030e-03,
1.98443400e-04, 6.67153620e-03, 2.56986380e-03, 1.11710200e-04,
3.56181000e-04, 9.07088000e-05, 8.64625000e-02, 3.85375000e-02,
7.79100000e-02, 4.85625000e-02, 8.35800000e-02, 8.75700000e-02,
5.01375000e-02, 1.26682500e-01, 5.05575000e-02]),

'depletable': False,
'fissionable': False}

from omnibus.raytrace.imager import Imager
imager = Imager(model.geometry,

lower=(-100, 0, -100),
upper=(250, 0, 100),
basis=(1, 0, 0),
max_pixels=1024)

imager.names = [c.name for c in model.compositions]
imager.colors = colors
imager.plot();

Rendering produces a faster, higher-resolution image but doesn’t show the extents or material names.

A–75

imager.render('rendered.png')
from IPython.display import Image
Image(filename='rendered.png')

A.2.5.2 Execute Omnibus

The Omnibus input to this problem uses ANISN data (the multigroup data distributed with ADVANTG) and
the SWORD model loaded above. Inside the Denovo block it specifies to output both the current (first angular
moment) and the angular flux (actual discrete ordinates solution at each angle).

%cat {SOURCE_DIR}/data/btest.omn

[PROBLEM]
name "Simple SWORD source-detector problem"
mode forward

[MODEL=sword]
input "btest5/btest5.sword"

[SOURCE=sword]

[PHYSICS=mg]
anisn_lib "27n19g"
pn_order 1
disable_upscattering true
omit_zaid 8018
mode p
pemax 662e3

(continues on next page)

A–76

(continued from previous page)

[DENOVO]
! Spatial grid with 'interpolation' keywords
x -100 2i -50 7i 50 8i 190 7i 210 2i 250
y -100 2i -50 2i -20 -6 3i 6 20 2i 50 2i 100
z -100 2i -50 -40 15i 40 50 2i 100

[DENOVO][OUTPUT]
current true
angular_flux true

[DENOVO][QUADRATURE]
order 16

[DENOVO][SOLVER=fixed]
[.][WITHIN_GROUP]
verbosity none

[RUN=serial]

!omnibus-run {SOURCE_DIR}/data/btest.omn

INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/btest.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
Generating serialized SWORD model...

...finished generating serialized SWORD model
INFO: Setting ANISN libraries based on data at /usr/local/advantg-data/27n19g.bin
INFO: Set default for 'load_scl' to 'False' in '/comp'
INFO: Set default for 'physics' to 'mg' in '/denovo'
INFO: Set default for 'boundary' to '{'_type': 'vacuum'}' in '/denovo'
INFO: Set default 'x_blocks 1' and 'y_blocks 1'
INFO: Set default for 'z_blocks' to '1' in '/denovo/decomposition'
INFO: Set default for 'quadrature' to 'qr' in '/denovo/quadrature'
INFO: Set default for 'construction' to 'levelsym' in '/denovo/quadrature'
INFO: Set default for 'mat' to 'True' in '/denovo/output'
INFO: Set default for 'source' to 'True' in '/denovo/output'
INFO: Set default for 'uncflux' to 'True' in '/denovo/output'
INFO: Set default for 'flux' to 'True' in '/denovo/output'
INFO: Set default for 'upscatter_groups' to 'thermal' in '/denovo/solver'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'solver' to 'gmres' in '/denovo/solver/within_group'
INFO: Method: sn
INFO: Equations: sc
INFO: Set default for 'tolerance' to '0.001' in '/denovo/solver/within_group'
INFO: Set default for 'preconditioner' to '{'_type': 'none'}' in '/denovo/solver/within_
↪→group' (continues on next page)

A–77

(continued from previous page)

INFO: Global Denovo mesh has 13392 cells
INFO: Writing Omnibus input ParameterList to btest.inp.xml
INFO: Writing preprocessed file to btest.pp.json
INFO: Writing processed ASCII input to 'btest.inp.omn'
INFO: Launching Omnibus driver on 1 cores
Running Omnibus...
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading Geant problem from GDML file at /rnsdhpc/code/src/scale/Exnihilo/packages/
↪→Omnibus/driver/example/data/btest5/sword.gdml
INFO: Loading 19 elements from Geant4
INFO: Loading nuclide data from Geant4 isotope libraries
INFO: Loading 48 isotopes from Geant4
WARNING: Nuclide data for 13027 was already set; ignoring and using existing data
WARNING: Nuclide data for 13027 was already set; ignoring and using existing data
INFO: Loading compositions from Geant4 material data
INFO: Creating default boundary mesh from (-12500 -12500 -12500) to (12500 12500 12500)␣
↪→for Geant4 geometry
Building physics 'mg'
INFO: Loading ANISN attributes from /usr/local/advantg-data/27n19g.info
INFO: Loading ANISN zaid map from /usr/local/advantg-data/27n19g.zaid
INFO: Loading ANISN cross sections from /usr/local/advantg-data/27n19g.bin
WARNING: Upscattering has been lumped into within-group scattering in the thermal groups
WARNING: Remapped 2 nuclide IDs: 6012->6000, 6013->6000
WARNING: Omitted 1 nuclide IDs: 8018
INFO: Truncating cross sections to groups [39, 46)
Building sources
Building Denovo solver internals
Ray tracing Denovo mesh
Mixing Denovo cross sections
Building Denovo sources
Constructing forward sources for Denovo
Discretizing SWORD sources (1 points)
Initializing Denovo solver
INFO: Constructing Denovo state vector with 7 groups, 13392 cells, 4 moments, 1 unknowns␣
↪→per cell
Performing analytic first-collision source calculation on 1 sources
Running Denovo transport calculation
Forward group 0 finished in 3 Belos Block GMRES iterations.
Forward group 1 finished in 3 Belos Block GMRES iterations.
Forward group 2 finished in 3 Belos Block GMRES iterations.
Forward group 3 finished in 4 Belos Block GMRES iterations.
Forward group 4 finished in 5 Belos Block GMRES iterations.
Forward group 5 finished in 7 Belos Block GMRES iterations.
INFO: Writing Silo file to 1 concurrent files using material volume fractions
Writing Denovo HDF5 output
Forward group 6 finished in 3 Belos Block GMRES iterations.

(continues on next page)

A–78

(continued from previous page)

Calculating angular fluxes
Run complete
Cleaning up

...finished running Omnibus in 14.5 seconds
Running Omnibus postprocessing
Loading HDF5 file...
WARNING: Failed to build 'm' axis (via <bound method DataAxis.from_group of <class
↪→'omnibus.data.axis.DataAxis'>>) for 'angular_flux' of '/denovo': "Unable to open␣
↪→object (object 'mesh_m' doesn't exist)"
INFO: Loaded Omnibus output data from 'btest.out.h5', problem name 'Simple SWORD source-
↪→detector problem', created on 2020MAR11 22:38 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'btest.out.h5', problem name 'Simple SWORD source-
↪→detector problem', created on 2020MAR11 22:38 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Writing Denovo visualization file...
INFO: Wrote Denovo visualization file to btest.denovo.xmf

...finished writing Denovo visualization file
Building RST summary...
INFO: Wrote summary file to btest.rst

...finished building RST summary

A.2.5.3 Process results

from omnibus.formats.output import load
dnv = load("btest.out.h5")['denovo'].extract()

Loading HDF5 file...
WARNING: Failed to build 'm' axis (via <bound method DataAxis.from_group of <class
↪→'omnibus.data.axis.DataAxis'>>) for 'angular_flux' of '/denovo': "Unable to open␣
↪→object (object 'mesh_m' doesn't exist)"
INFO: Loaded Omnibus output data from 'btest.out.h5', problem name 'Simple SWORD source-
↪→detector problem', created on 2020MAR11 22:38 using SCALE version 6.3.pre-b10 (branch
↪→'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

Uncollided flux

A good first step in analysis is to verify the source term: in this case, checking that it is nonzero only in the
highest group. The xs command slices the data with the group index for a single group, or with a Python
slice object to get a range of groups. (a[slice(1,None)] is equivalent to a[1:].)

import numpy as np

uncflux = dnv['uncflux']
print(np.count_nonzero(uncflux.xs(g=0)))
print(np.count_nonzero(uncflux.xs_by_index(g=slice(1,None))))

A–79

13392
0

A lineout plot along y = z = 0 for the source group clearly shows the attenuation through the detector at
x = 200.

from omnibus.data import plot

plots = plot(uncflux.xs(y=0.0, z=0.0, g=0), logy=True);
plots['ax'].set_ylabel('');

The “scalar flux” is the zeroth angular moment of the angular flux:

φ =

∫︁
4π
ψ(~x, ~Ω)dΩ

It is effectively a measure of particle density, and is used in calculating reaction rates.

The following command extracts the data at the origin. Since the only remaining data axis is energy, the plot
function will render a step plot of the group-average fluxes.

Flux

import matplotlib.pyplot as plt

flux = dnv['flux']
origin_spectrum = flux.xs(x=0, y=0, z=0)

plots = plot(origin_spectrum, logy=True)
ax = plots['ax']

(continues on next page)

A–80

(continued from previous page)

Rotate the X tick labels
plt.setp(ax.get_xticklabels(), rotation=90);
ax.set_title(ax.get_ylabel())
ax.set_ylabel("Particle flux (p/cm^2-s)");

The next command accesses the flux at group index 3 (not 3 eV!) at z = 0. With the resulting x-y data, the
plotter renders a pseudocolor plot. Specifying a special value for norm renders the colors on a logarithmic
scale.

from matplotlib.colors import LogNorm

plot(flux.xs(z=0., g=3), norm=LogNorm());

A–81

Net current

The current field is the “net current”, the first moment of the angular flux:

~J =

∫︁
4π

~Ωψ(~x, ~Ω)dΩ .

It is stored as an energy, space, and direction-dependent field; the data attribute is the pointer to the HDF5
data.

The current describes the net flow rate of particles traveling through a point in space. The following command
print the dimensionality of the current:

current = dnv['current']
print(", ".join("{}={}".format(d,s)

for (d,s) in zip(current.dims, current.shape)))

g=7, z=24, y=18, x=31, dir=3

The following command takes a slice at the energy group for photons at 1e5 eV, at the XYZ coordinates of
(7, 3, 5). The resulting vector is the current along the (x, y, z) directions.

sliced = current.xs(x=7.0, y=3.0, z=5.0, g=('p', 1e5))
print(sliced.mesh('dir'))
sliced

['x' 'y' 'z']

Other slices are of course possible. This command plots the multigroup net current at a particular point:

plot(current.xs(x=7.0, y=3.0, z=5.0, dir='x'), logy=True);

A–82

The full angle-dependent particle flux can be approximated by using the angular moments. This is the PN

approximation.

ψ(~x, ~Ω) ≈
1

4π
(φ(~x) + 3~Ω · ~J(~x))

However, a much more accurate representation of the angular flux can be obtained directly from Denovo.

Angular flux

The full S N flux can be saved by setting angular_flux true inside the [DENOVO][OUTPUT] block. This
option requires careful consideration due to the disk space requirements: for an S 16 quadrature set, it will be
288 times as large as the scalar flux.

Extract the angle-dependent flux averaged over a single spatial point in one energy␣
↪→group
flux = dnv['angular_flux']
angle_flux = flux.xs(g=('p', 7e5), x=200.0, y=1.5 , z=2.5)
angle_flux

angles = dnv.quadrature_angles.extract()
angles

These tools can perform a wide range of functions. For example, numpy logical expressions can determine
all the angle indices in the +z direction, and matplotlib can then create a scatter plot of the angluar fluxes
projected into the xy plane.

A–83

z_slice = angles.data[:,2] > 0

plt.scatter(angles[z_slice,0], angles[z_slice,1],
c=np.abs(angle_flux.data[z_slice]),
norm=LogNorm(), cmap='viridis', edgecolor='none')

plt.axis('square');
plt.colorbar();

A.2.6 EXNIHILO MESH INPUT DEFINITION

These small problems are used in the Denovo unit tests. The output files should be saved to Geometria/
mesh/rect/test/data.

Set up plotting
%matplotlib inline
from exnihilotools.matplotlib import screen_style
screen_style()

A.2.6.1 Problem A

This is a 3D problem with a volume source.

from omnibus.mesh import Mesh
from omnibus.formats.meshmodel import MeshModelFile
import numpy as np

mesh = Mesh(x=np.arange(21), y=np.arange(16), z=np.arange(11))
problem = MeshModelFile.from_mesh(mesh)

If the mesh axes were irregular, then a snippet of code like the following could be used to ‘slice’ the matids
more easily. In order to select a view of the data to assign matids, we have to use standard python slice
objects or integers.

A–84

from omnibus.data import simplify_logical_slice

x_centers = problem['matids'].axis('x').centers
def x_slice(xmin, xmax):

return simplify_logical_slice((x_centers >= xmin) & (x_centers <= xmax))
print(x_slice(3,10))

slice(3, 10, None)

The xs_by_index method selects subsets of the mesh, either multiple elements or a single element, along
multiple axes. The following chunks of code are used to assign materials and a source definition.

from omnibus.data import plot

matids = problem['matids']
zmats = matids.xs_by_index(z=slice(1,))
zmats.xs_by_index(y=slice(5, 15)).data[:] = 1
zmats.xs_by_index(x=slice(0,15), y=slice(10,15)).data[:] = 2
zmats.xs_by_index(y=slice(3,5)).data[:] = 2

plot(matids.xs(x=0.5), edgecolor='gray', linewidth=0.25);

src = problem['volsrc']
spectra = src['spectra']

num_groups = 3
spectra.resize(2, num_groups)
spectra.get_spectrum(0)[:] = [0.6, 0.3, 0.1]
spectra.get_spectrum(1)[:] = [0.4, 0.2, 0.4]

srcids = src['ids']

(continues on next page)

A–85

(continued from previous page)

srcids.xs_by_index(y=slice(3,5), z=slice(1,9)).data[:] = 1
plot(srcids.xs(z=1.0));

strength = src['strength']

q0 = np.linspace(0.5, 1.5, 15)
q1 = np.linspace(0.5, 1.5, 20)

strength.xs_by_index(x=slice(0,15), y=slice(10,15), z=slice(1,10)).data[:] = q0
strength.xs_by_index(y=slice(3,5), z=slice(1,10)).data[:] = q1

plot(strength.xs(z=1.0));

A–86

Now that the problem is constructed, it can be written to disk for later use in Omnibus:

import h5py
from omnibus.data import dump_root

with h5py.File("simple-3d.h5", 'w') as f:
dump_root(problem, f)

INFO: Omitting empty point source

A.2.6.2 Problem B

This 2D problem is constructed similarly to the previous one.

from omnibus.mesh import Mesh2D

Make the mesh
mesh = Mesh2D(x=np.arange(21), y=np.arange(16))
problem = MeshModelFile.from_mesh(mesh)

Assign data directly: note that the axes are ordered
in reverse, so slice indices must also be reversed
matids = problem['matids'].data
assert problem['matids'].dims == ['y', 'x']
matids[5:15,:] = 1
matids[10:15,0:15] = 2
matids[3:5,:] = 2

src = problem['volsrc']
spectra = src['spectra']

(continues on next page)

A–87

(continued from previous page)

spectra.resize(2, 3)
spectra.get_spectrum(0)[:] = [0.6, 0.3, 0.1]
spectra.get_spectrum(1)[:] = [0.4, 0.2, 0.4]

srcids = src['ids'].data
srcids[3:5,:] = 1

strength = src['strength'].data

q0 = np.linspace(0.5, 1.5, 15)
q1 = np.linspace(0.5, 1.5, 20)

strength[10:15,0:15] = q0
strength[3:5,:] = q1

with h5py.File("simple-2d.h5", 'w') as f:
dump_root(problem, f)

INFO: Omitting empty point source

A.2.6.3 Problem C

This 3D problem includes mix tables and does not specify a source definition.

import matplotlib.pyplot as plt
from omnibus.formats.meshmodel import MixTable

mesh = Mesh(x=np.arange(17), y=np.arange(9), z=np.arange(9))
problem = MeshModelFile.from_mesh(mesh)

matids = problem['matids'].data

Note that dimensions are z/y/x
matids[:] = 0
matids[:6,2:6,4:13] = 2 # mixture
matids[3:5,3:5,5:12] = 1 # pure

(fig, ax) = plt.subplots()
ax.pcolormesh(mesh.x, mesh.y, matids[4,:,:], edgecolor=(.5,.5,.5))
ax.set_aspect(1.0);

Build a mix table
mix_table = np.array([[1.0, 0.0],

[0.0, 1.0],
[0.5, 0.5]])

problem['mixtable'] = MixTable.from_table(mix_table)

Print the COO representation it made
print(problem['mixtable'].data)

(continues on next page)

A–88

(continued from previous page)

Save to disk
with h5py.File("mixed-3d.h5", 'w') as f:

dump_root(problem, f)

INFO: Omitting empty volume source
INFO: Omitting empty point source

[(0, 0, 1.) (1, 1, 1.) (2, 0, 0.5) (2, 1, 0.5)]

A.2.6.4 Uniform source and material

mesh = Mesh(x=np.arange(10, dtype='f8'),
y=np.arange(10, dtype='f8'),
z=np.arange(10, dtype='f8'))

problem = MeshModelFile.from_mesh(mesh)

matids = problem['matids'].data
matids[:] = 0

Define source spectra
src = problem['volsrc']
spectra = src['spectra']
spectra.resize(1,1)
spectra.get_spectrum(0)[:] = [1.0]

Assign IDs and source strengths
srcids = src['ids'].data
srcids[:] = 0
strength = src['strength'].data
strength[:] = 1.0

Save to disk
with h5py.File("uniform-3d.h5", 'w') as f:

dump_root(problem, f)

A–89

INFO: Omitting empty point source

A.2.6.5 Both point and volume sources

The input file constructed here will contain both volume and point sources.

mesh = Mesh(x=np.arange(15, dtype='f8'),
y=np.arange(9, dtype='f8'),
z=np.arange(5, dtype='f8'))

problem = MeshModelFile.from_mesh(mesh)

Add volume sources
src = problem['volsrc']
spectra = src['spectra']

num_groups = 3
spectra.resize(4, num_groups)
spectra.get_spectrum(0)[:] = [0.6, 0.3, 0.1]
spectra.get_spectrum(1)[:] = [0.4, 0.2, 0.4]
spectra.get_spectrum(2)[:] = [0.3, 0.5, 0.2]
spectra.get_spectrum(3)[:] = [1.0, 0.0, 0.0]

srcids = src['ids'].data
srcids[:3,6:8,0:2] = 1
srcids[:,2:6,4:8] = 1

plot(src['ids'].xs(z=1.0));

Next, set varying strengths in the different cells.

strength = src['strength'].data
strength[:3,6:8,0:2].flat = np.linspace(0.1, 1.1, 3*2*2)

(continues on next page)

A–90

(continued from previous page)

strength[:,2:6,4:8].flat = np.linspace(0.5, 2.5, 4*4*4)

plot(src['strength'].xs(z=1.0));

Finally, add the point sources and write the problem to disk.

Add point sources
pointsrc = problem['ptsrc']

Points are in X,Y,Z and use the same spectra as the volume source
pointsrc.resize(2, spectra.num_groups)
pointsrc.set_point(0, (10.5, 5.5, 0.5), 3.45, spectra.get_spectrum(2))
pointsrc.set_point(1, (13.5, 7.5, 3.5), 2.34, spectra.get_spectrum(3))

with h5py.File("points.h5", 'w') as f:
dump_root(problem, f)

A.3 MULTIGROUP DATA EXPLORATION

These examples show how to use Exnihilo’s Python bindings (page 2) to extract and visualize multigroup and
other Denovo-related data.

A.3.1 CROSS SECTION GENERATION

This example demonstrates generating and visualizing multigroup cross sections using the Exnihilo python
interface.

Set up example
%matplotlib inline
%load_ext wurlitzer
from exnihilotools.matplotlib import screen_style
screen_style()

A–91

A.3.1.1 SCALE XSProc generation

We provide an interface to SCALE’s modern cross section processing routines. The input can be specified
either as a SCALE composition block or an Exnihilo Composition object. The cross section library name
can be a path to a SCALE library or one of the library aliases given in the SCALE FileNameAliases.txt
which lives in the SCALE installation.

from nemesis import cmake_config, Std_DB, make_view, make_const_view

db = Std_DB.from_dict({
'Pn_order' : 3,
'xs_library' : "test-8grp",
'downscatter': False})

from robus import (Composition, NEUTRON, TOTAL, SCATTERING, FISSION,
Nuclide_Metadata as NMD)

import transcore

NMD.load_SCL()
builder = transcore.XS_Builder_Fulcrum(db)

Add a 'void' composition for matid=0
builder.add(0, Composition())

Add a composition from number densities
water = Composition(300.0,

[1001, 1002, 8016, 8017],
[6.6728e-02, 7.6745e-06, 3.3287e-02, 1.2680e-05])

builder.add(2, water)

Run the cross section processing and get the cross sections
builder.build()
mats = builder.get_materials()

>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 4 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells

A.3.1.2 1-D Cross section visualization

The cross sections can be viewed through numpy wrappers. (No data copying is being done here.)

bounds = builder.group_bounds.group_bounds(NEUTRON)
water_xs = mats.get_material(2)

We can plot the reaction rates:

import numpy as np

sigma = np.asarray(water_xs.sigma)

(continues on next page)

A–92

(continued from previous page)

sigma_s = np.asarray(water_xs.sigma_x(SCATTERING))
#sigma_f = np.asarray(water_xs.sigma_x(FISSION))

import matplotlib.pyplot as plt
from matplotlib.colors import Normalize, LogNorm
from exnihilotools.matplotlib.artists import plot_multigroup
from exnihilotools.matplotlib.axes import grid_groups, annotate_groups

(fig, ax) = plt.subplots(subplot_kw=dict(xscale='log'))
plot_multigroup(ax, bounds, sigma, label='total')
plot_multigroup(ax, bounds, sigma_s, label='scatter')
ax.legend()
grid_groups(ax, bounds)
annotate_groups(ax, bounds);

A.3.1.3 Scattering matrix visualization

The scattering matrix with all the requested angular moments (g, g′, l) can be pulled directly from the cross
section container. In this example, there are 4 moments since we requested P3 scattering.

scat = water_xs.scatter_matrix
scat.shape

(8, 8, 4)

plt.matshow(scat[:,:,0], cmap='viridis', norm=LogNorm())
plt.title("P_0 scattering")
plt.colorbar();

A–93

scat[3,3,:]

array([0.06847651, 0.03386217, 0.01825174, 0.00616768])

A scattering cross section that’s perfectly forward-peaked

σs(µ) = δ(µ − 1)

will have σ0 = σ1 = σ2 =

plt.matshow(scat[:,:,1] / np.ma.masked_equal(scat[:,:,0], 0.0), cmap='rb_linear',␣
↪→norm=Normalize(-1,1))
plt.title(r"Forward peakness (σ_1 / σ_0)")
plt.colorbar();

A–94

Legendre coefficents

The numpy package has a function for evaluating a Legendre series at a series of points. This allows us to
easily visualize the reconstructed scattering as a function of angle.

from numpy.polynomial.legendre import legval
x = np.linspace(-1, 1, 128)

def plot_legendre(ax, coeffs, norm=False, **kwargs):
if norm:

coeffs = coeffs / coeffs[0]
ax.plot(x, legval(x, coeffs), **kwargs)
#ax.set_ylim(-1, 1)
ax.grid()
return ax

(fig, ax) = plt.subplots()
plot_legendre(ax, [0,0,0,1]);
ax.set_title("Legendre function P_3");

A–95

g = 0
(fig, ax) = plt.subplots() # subplot_kw=dict(yscale='log'))

Loop through all the outscatter groups for the highest-energy xs
for gp in range(8):

plot_legendre(ax, scat[gp, g, :], label=r'${:d} \to {:d}$'.format(g,gp))
ax.legend();
ax.set_title(r'$\sigma_s(\mu)$ for the highest-energy group');

A–96

A.3.2 INFINITE-MEDIUM CRITICALITY SEARCH

Simple linear algebra can solve for the keff of an infinite homogeneous medium given multigroup cross
sections. This advanced example ties together some low-level Exnihilo utilities (in Robus and Transcore)
with python packages numpy and scipy.

This example’s objective is to determine a critical homogeneous mixture of 5%-enriched UO2 and water. The
final result will be a composition that can then be used for unit testing.

Set up example
%matplotlib inline
%load_ext wurlitzer
from exnihilotools.matplotlib import screen_style
screen_style()

A.3.2.1 Construct compositions

There are some utility functions in Exnihilo that build UO2 compositions and can calculate mixtures.

from robus import (Composition, Comp_Mixer, NEUTRON, TOTAL, SCATTERING, FISSION, NU_
↪→FISSION,

Nuclide_Metadata as NMD)

NMD.load_SCL()

temperature = 300.0
density = 10.257
enrichment_pcwt = 5.0
uo2 = Comp_Mixer.get_enriched_uo2(temperature, density, enrichment_pcwt)

density = 1.0
h2o = Composition(temperature, density, [1001, 8016],

[0.11191539275728472, 0.8880846072427153]);

>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib

MIX_DENSITY = 2.0 # Irrelevant for infinite medium
def mix(fuel, mod, frac_fuel):

return Comp_Mixer.mix(MIX_DENSITY, fuel, mod, frac_fuel, Comp_Mixer.MIX_BY_WEIGHT)

mixture = mix(uo2, h2o, frac_fuel=0.5)
mixture._asdict()

{'name': '',
'matid': 3,
'temperature': 300.0,
'density': 2.0,
'fissionable': True,
'depletable': True,
'zaid': array([1001, 8016, 92234, 92235, 92236, 92238], dtype=uint32),
'wtfrac': array([5.59576964e-02, 5.03307698e-01, 1.96126900e-04, 2.20367303e-02,

1.01368959e-04, 4.18400380e-01])}

A–97

A.3.2.2 Calculating k of a composition

The multigroup approximation allows k-effective of a homogeneous composition to be calculated straightfor-
wardly by explicitly constructing a matrix whose largest eigenvalue is k. The first step of this process is to
use SCALE’s XSProc code via the XS_Builder_Fulcrum class to collapse an eight-group test library into a
homogeneous set of cross sections, which are then converted into native numpy arrays.

from nemesis import Std_DB, make_view, make_const_view
import transcore
import numpy as np

Set up the builder
db = Std_DB.from_dict({

'Pn_order' : 0,
'xs_library' : "v7-56",
'downscatter': False})

builder = transcore.XS_Builder_Fulcrum(db)
builder.add(0, mixture)

Generate and retrieve cross sections
builder.build()
bounds = builder.group_bounds.group_bounds(NEUTRON)
mats = builder.get_materials()
mixture_xs = mats.get_material(0)

Extract cross sections as native Python objects
sigma_t = np.asarray(mixture_xs.sigma)
sigma_s = np.asarray(mixture_xs.scatter_matrix)[:,:,0] # P0 moments of scattering matrix
nu_sigma_f = np.asarray(mixture_xs.sigma_x(NU_FISSION))
chi = np.asarray(mixture_xs.chi)

>>> Loading AMPX library at '/usr/local/scale/data/scale.rev04.xn56v7.1'
>>> Retained 6 of 457 nuclides on the master AMPX library
>>> Running XSProc on 1 cells

from exnihilotools.matplotlib.artists import plot_multigroup
from exnihilotools.matplotlib.axes import grid_groups, annotate_groups

Here is the scattering matrix:

import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
plt.matshow(sigma_s, norm=LogNorm());

A–98

The multigroup neutron balance equation (with fission and no extraneous source) is:

Σt,gφg =

G−1∑︁
g′=0

Σs,g′→gφg′ +
1
k
χg

G−1∑︁
g′=0

νΣ f ,g′φg′ ,

which can be written as the linear algebra equation

TΦ = S Φ +
1
k
χ f T Φ ,

where f T Φ is the fission source strength density (a scalar), S is the scattering matrix, and T is diag(Σt).

Simple manipulations yield an explicit eigenvalue equation

kΦ = (T − S)−1χ f T Φ .

The following code constructs the right-hand-side matrix and solves for its eigenvalues:

t_minus_s = (np.diag(sigma_t) - sigma_s)
chi_nusig = np.outer(chi, nu_sigma_f)
final_matrix = np.matmul(np.linalg.inv(t_minus_s), chi_nusig)
(all_k, all_phi) = np.linalg.eig(final_matrix)

def max_eigenvalue(all_k, all_phi):
Find k-eff
k_idx = np.argmax(all_k)
k = all_k[k_idx].real
Get the corresponding eigenvector and make sure it's positive
phi = all_phi[:,k_idx].real
if np.min(phi) < 0 and np.max(phi) <= 0:

phi *= -1

(continues on next page)

A–99

(continued from previous page)

return (k, phi)

(k, phi) = max_eigenvalue(all_k, all_phi)

print("K-eff is", k)

K-eff is 1.3696586943136313

delta_lethargy = -np.diff(np.log(bounds))
(fig, ax) = plt.subplots(subplot_kw=dict(xscale='log', yscale='log'))
plot_multigroup(ax, bounds, phi / delta_lethargy)
ax.set_xlabel('Energy (eV)')
ax.set_ylabel('Flux per unit lethargy')
ax.set_yticks([])
ax.set_yticklabels([]);

A.3.2.3 Finding criticality

The above process successfully calculates the eigenvalue (keff) and eigenvector (flux spectrum) given a single
scalar, the fuel fraction. It is condensed below into a single function calc_k, which is the workhorse of a
function calc_reactivity that gives the reactivity,

ρ =
k − 1

k
,

as a function of the fuel fraction. Solving for the single root ρ = 0 is therefore solving for the critical fuel
fraction.

Using an 8-group test library instead of the 56-group library above substantially reduces the calculation time.

A–100

db = Std_DB.from_dict({
'Pn_order' : 0,
'xs_library' : "test-8grp",
'downscatter': False})

def calc_k(frac_fuel):
mixture = mix(uo2, h2o, frac_fuel=frac_fuel)
builder = transcore.XS_Builder_Fulcrum(db)
builder.add(0, mixture)

Generate and retrieve cross sections
builder.build()
bounds = builder.group_bounds.group_bounds(NEUTRON)
mats = builder.get_materials()
mixture_xs = mats.get_material(0)

Get cross sections as numpy objects
sigma_t = np.asarray(mixture_xs.sigma)
sigma_s = np.asarray(mixture_xs.scatter_matrix)[:,:,0] # P0 moments of scattering␣

↪→matrix
nu_sigma_f = np.asarray(mixture_xs.sigma_x(NU_FISSION))
chi = np.asarray(mixture_xs.chi)

Construct fission-transport matrix
t_minus_s = (np.diag(sigma_t) - sigma_s)
chi_nusig = np.outer(chi, nu_sigma_f)
final_matrix = np.matmul(np.linalg.inv(t_minus_s), chi_nusig)

Calculate eigenvalue and eigenvector
(all_k, all_phi) = np.linalg.eig(final_matrix)
return max_eigenvalue(all_k, all_phi)

def calc_reactivity(frac_fuel):
if frac_fuel <= 0:

k = 0
rho = -np.inf

elif frac_fuel >= 1:
k = rho = np.inf

else:
assert not np.isnan(frac_fuel)
(k, _) = calc_k(frac_fuel)
rho = (k - 1.0) / k

print("{frac_fuel:f} fuel -> k={k:.5f} (rho={rho:g})".format(**locals()))
return rho

Finally, we use the optimization toolkit from scipy to find the root, giving our final answer.

from scipy.optimize import root_scalar

result = root_scalar(calc_reactivity, method='brentq', bracket=(0,1), x0=0.5, rtol=1e-4)
print(result)
frac_fuel = result.root

(continues on next page)

A–101

(continued from previous page)

print("Final fuel fraction:", frac_fuel)

0.000000 fuel -> k=0.00000 (rho=-inf)
1.000000 fuel -> k=inf (rho=inf)
0.500000 fuel -> k=1.47630 (rho=0.322633)

>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 6 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells
>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 6 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells

0.250000 fuel -> k=1.03433 (rho=0.0331943)
0.125000 fuel -> k=0.64392 (rho=-0.552994)
0.242922 fuel -> k=1.01642 (rho=0.016158)

>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 6 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells
>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 6 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells
>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 6 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells

0.236399 fuel -> k=0.99956 (rho=-0.000440535)
0.236572 fuel -> k=1.00000 (rho=1.41172e-06)
0.236560 fuel -> k=0.99997 (rho=-3.22038e-05)

converged: True
flag: 'converged'

function_calls: 9
iterations: 8

root: 0.23657180483813495
Final fuel fraction: 0.23657180483813495

>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 6 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells
>>> Loading AMPX library at '/usr/local/scale/data/test8g_v7.1'
>>> Retained 6 of 449 nuclides on the master AMPX library
>>> Running XSProc on 1 cells

The final answer, the critical fuel mixture, is thus:

mix(uo2, h2o, frac_fuel=frac_fuel)._asdict()

A–102

{'name': '',
'matid': 11,
'temperature': 300.0,
'density': 2.0,
'fissionable': True,
'depletable': True,
'zaid': array([1001, 8016, 92234, 92235, 92236, 92238], dtype=uint32),
'wtfrac': array([8.54393663e-02, 7.06029871e-01, 9.27961893e-05, 1.04265381e-02,

4.79620753e-05, 1.97963466e-01])}

A.4 SHIFT

A.4.1 DEBUGGING GEOMETRY PROBLEMS IN SHIFT

It is not unusual to make an error when constructing a geometry model. This example gives a few useful
procedures for tracking down geometry errors.

Set up example environment
import os
from exnihilotools.matplotlib import screen_style
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")
%matplotlib inline
screen_style()

A.4.1.1 Construct compositions via the SCL

Since this test geometry is a Geometria XML input, it doesn’t natively support composition definitions. Here
is one of the many ways to define compositions: loading them using the robus Python wrappers from the
SCALE standard composition library, and then writing them to an HDF5 file which is then specified in the
Omnibus input.

from robus import (Composition, load_scl_compositions, load_hdf5_compositions, save_hdf5_
↪→compositions)

Load the compositions into a dictionary (the method returns a vector of Composition␣
↪→objects)
scl_comps = dict((c.name, c) for c in load_scl_compositions())
Display a couple of them in alphabetical order
print(sorted(scl_comps.keys())[:5])

['al2o3', 'b4c', 'balsa', 'benzene', 'beo']

Pick a few compositions
export_comps = [scl_comps[k] for k in ["dry-air", "ss304", "water"]]
Dump them to an HDF5 file
save_hdf5_compositions(os.path.join(SOURCE_DIR, "data", "buggy.comp.h5"), export_comps)

A.4.1.2 Run Shift through Omnibus

With a pre-constructed (but broken) geometry file, an Omnibus input file, and the set of compositions just
generated, Omnibus can be run to see what happens.

A–103

%cat {SOURCE_DIR}/data/buggy.omn
!omnibus-run {SOURCE_DIR}/data/buggy.omn

[PROBLEM]
name "Buggy geometry"
mode forward

[MODEL=gg]
input "buggy.gg.omn"

[COMP]
! Note: this file should be generated automatically by the example
input "buggy.comp.h5"

[PHYSICS=ce]
ce_lib "ce_v7.1_endf"

[SOURCE=separable beam_point]
[SOURCE][SHAPE=point]
point -3 -2 0
[SOURCE][ANGLE=mono]
dir 1 0 0
[SOURCE][ENERGY=mono]
energy 14e6
particle_type n

[TALLY]
[.][DIAGNOSTIC=debug_history]
! [..][DIAGNOSTIC=history]
[..][MESH global_mesh]
reactions flux
x -4 7i 4
y -4 7i 4
z -4 7i 4

[SHIFT]
np 100

[RUN=serial]
INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/buggy.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
Generating Geometria XML input file from .gg.omn...
INFO: Starting Geometria preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/buggy.gg.omn (continues on next page)

A–104

(continued from previous page)

...finished loading problem db from Omnibus ASCII file
INFO: Writing Geometria input ParameterList to buggy.gg.xml

...finished generating Geometria XML input file from .gg.omn
INFO: Set default for 'fissionable_only' to 'False' in '/source/beam_point'
INFO: Set default for 'mode' to 'n' in '/physics/ce'
INFO: Set default for 'xs_cache' to 'tot' in '/physics/ce'
INFO: Set default for 'xs_accel' to 'True' in '/physics/ce'
INFO: Set default for 'fission_neutrons' to 'True' in '/physics/ce/fission'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'decomposition' to '{'_type': 'none'}' in '/shift'
INFO: Set default for 'verbosity' to 'low' in '/shift/transporter'
INFO: Set default for 'method' to 'roulette' in '/shift/vr'
INFO: Writing Omnibus input ParameterList to buggy.inp.xml
INFO: Writing preprocessed file to buggy.pp.json
INFO: Writing processed ASCII input to 'buggy.inp.omn'
INFO: Launching Omnibus driver on 1 cores
Running Omnibus...
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/buggy.comp.h5
INFO: Creating default boundary mesh from (-4 -4 -4) to (4 4 4) for GG geometry
Building physics 'ce'
INFO: Loading CE library /usr/local/scale/hpcdata/ce_v7.1_endf.h5
WARNING: The following nuclide IDs were remapped due to missing neutron data
WARNING: Remapped 2 nuclide IDs: 6012->6000, 6013->6000
WARNING: The following neutron cross sections were set to zero: 8018
INFO: Corrected thermal xs balance: 1.2e-05% error in h-1 @ 293.6K
Building tallies
Building sources
Building Shift solver internals
Building Shift sources
Initializing Shift solver
Building Shift tallies
Running Shift transport calculation
ERROR: Geometry error in particle 0:0: In universe 'global': Failed to move from left␣
↪→(local volume #0) across left.s (local surface #1) at local point {0.5,-2,0} along {1,
↪→0,0}: possible neighbors are {left (#0), fill (#2)}, possible nearby volumes are {left␣
↪→(#0), right (#1), fill (#2), EXTERIOR (#3)}
ERROR: Geometry error in particle 0:1: In universe 'global': Failed to move from left␣
↪→(local volume #0) across left.s (local surface #1) at local point {0.5,-2,0} along {1,
↪→0,0}: possible neighbors are {left (#0), fill (#2)}, possible nearby volumes are {left␣
↪→(#0), right (#1), fill (#2), EXTERIOR (#3)}
FATAL ERROR: Input validation failed:
FATAL ERROR: Lost too many particles (2) locally

(continues on next page)

A–105

(continued from previous page)

FATAL ERROR: ^^^ at /rnsdhpc/code/src/scale/Exnihilo/packages/Shift/mc_transport/inst_gg_
↪→sce/../DR_Source_Transporter.t.hh:374
Cleaning up

...failed while running Omnibus after 2.0 seconds
INFO: Omnibus run failed; printing log since the last successful status message
INFO:
************************* OMNIBUS ERROR LOG *************************
::: Cleaning up
************************* END ERROR LOG *************************

FATAL ERROR: An unexpected error occurred. Please check the log file at omnibus_2020-03-
↪→11-223747.log for more details.
FATAL ERROR: Command '/rnsdhpc/code/build/Exnihilo-examples/Exnihilo/packages/Omnibus/
↪→driver/omnibus buggy.inp.xml' returned non-zero exit status 1.

A.4.1.3 Understanding the error message

Oops! Too many particles encountered geometry errors, so the problem aborted. The first thing to do is to try
to understand the error message.

!!! Geometry error in particle 0:0: In universe 'global': Could not find the volume
connecting volume 0 (left) across surface 2 (right.s) at local point 0.5 -2 0 along
{1 0 0}: neighbors are {0, 2}, bounding volumes are {0, 1, 2, 3}
^^^ at {0.5 -2 0} along {1 0 0}

The first thing to note is the particle identification: 3:15 means the 16th history on the 4th Shift thread being
run. Since Omnibus error messages use C indexing, 0:0 means the very first particle to be transported on the
only instance of Shift.

Shift indicated a problem with the geometry as opposed to the CE data or physics options that were set. Since
this problem uses GG as the geometry model, the error message also provides contextual details of how the
error occurred, which can be compared to the provided geometry:

%cat {SOURCE_DIR}/data/buggy.gg.omn

[GEOMETRY]
global "global"

[UNIVERSE=general global]
interior -outer

[UNIVERSE][SHAPE=sphere outer]
radius 4

! Overlapping left and right spheres
[UNIVERSE][SHAPE=sphere left]
radius 1.5
origin -1 -2 0
[UNIVERSE][SHAPE=sphere right]
radius 1.5
origin 1 -2 0

(continues on next page)

A–106

(continued from previous page)

! Cell definitions
[UNIVERSE][CELL left]
comp water
shapes -left
[UNIVERSE][CELL right]
comp ss304
shapes -right
[UNIVERSE][CELL fill]
comp "dry-air"
shapes +left +right -outer

The message says it’s a problem connecting the cell named “left” with the surface named “right.s” (which
we can guess is the spherical surface created by the “right” sphere shape). It shows the point in space and
direction of travel; and if this error had happened inside of a daughter universe (such as an assembly in a
reactor), the positions both in local space and global problem space would be presented.

The other information about neighbors and bounding volumes is not immediately useful because it only
provides internal IDs for those cells rather than names that you the user input. However, the Omnibus Python
front end tools can help translate thse cell IDs. (Note that since the GG input file does not provide a mapping
between composition names and internal IDs, an explicit compositions argument must be passed to the
load_gg call.)

from omnibus.raytrace.load import load_gg
model = load_gg(os.path.join(SOURCE_DIR, "data", "buggy.gg.omn"),

compositions=load_hdf5_compositions(os.path.join(SOURCE_DIR, "data",
↪→"buggy.comp.h5")))

Generating Geometria XML input file from .gg.omn...
...finished generating Geometria XML input file from .gg.omn

The resulting model contains the geometry, compositions, and (for some geometry/model types) other data
such as tallies. In this case, the only concern is the geometry. The generic “describe” function will print a
detailed description of the geometry’s structure.

print(model.geometry.describe())

**
GG Geometry Description
**

Source file: ``buggy.gg.xml``

Geometry construction/tracking tolerances and options:

- Length scale: 1 cm

- Surface elision: 1e-08

- Surface simplification: 1e-08 cm

(continues on next page)

A–107

(continued from previous page)

- Shape enclosure: 1e-08

- Bounding box expansion: 1e-07

- Almost-lost particle bump: 1e-08 cm

- Fast geometry shortcuts are enabled.

Note that volumes are described in [Reverse Polish Notation]
(https://en.wikipedia.org/wiki/Reverse_Polish_notation), where
'~' is the negation operator, '&' is the intersection/and
operator, and '|' is the union/or operator.

**
global: General universe
**
:# Cells: 4 (offset = 0)
:# Surfaces: 3 (offset = 0)
:Bounding box: ``{-4 -4 -4 to 4 4 4}``

Volumes (local indexing):

======= ======== ==
ID Name Surface logic
======= ======== ==
0 left 1 ~
1 right 2 ~
2 fill 0 ~ 1 & 2 &
3 EXTERIOR 0
======= ======== ==

Surfaces:

======= ======= ==
ID Name Description
======= ======= ==
0 outer.s Sphere: r=4
1 left.s Sphere: r=1.5 at -1 -2 0
2 right.s Sphere: r=1.5 at 1 -2 0
======= ======= ==

Material fills:

======= ========================= =========================
Cell ID Name Fill
======= ========================= =========================
0 left matid 2
1 right matid 1
2 fill matid 0
3 EXTERIOR EXTERIOR
======= ========================= =========================

A–108

From this diagnostic description, it is clear that the only “neighbor” for volume 0 (left) is volume 2 (fill),
but the failed particle tries to cross a surface right.s. In other words, the left and right cells are not
connected but the particle crosses the “right” sphere while inside the left. We examine the input and notice
that the two spheres overlap. Excluding the right sphere from the left one (or separating the spheres or
reducing their size) will fix the problem.

A.4.1.4 Post-mortem analysis of problem run

For more sinister cases in which the error only occurs after some other sequence of events, or for geometry
types that don’t provide as much useful debugging information as GG, another diagnostic tool may prove
useful: the history tally.

Fortunately, the input already has a debug_history diagnostic although if it did not, it could be simply
added and the problem run again to get the same error, since Shift is reproducible on the same number of
processors when domain replicated.

The debug_history option keeps a rolling list of all particle events on all processors, and if the particle
dies because of an error (usually a geometry error), an HDF5 file will be written with that particle’s history.
Otherwise, or for successfully transported particles, no history will be output. Thus, for histories where no
error occurs, the performance impact of the diagnostic will be minimal: no I/O is occurring, and little to no
data is even being allocated.

The erroneous history files are saved to files named debug_history-pNNNN.h5, where NNNN is the process
that failed (in this case just zero). The easiest and clearest way to visualize the output is with the convenience
function to_frame that returns the data as a Pandas dataframe.

from omnibus.formats.debug_history import load as load_debug_history

hist_file = load_debug_history("./debug_history-p0.h5")
hist_file['histories'].to_frame()

Loading HDF5 file...
INFO: Loaded DebugHistoryDiagGroup data from './debug_history-p0.h5'

...finished loading HDF5 file

A.4.1.5 2D raytracing through Python

Visualizing the erroneous part of the geometry is also an extremely useful tool. By default, the ray tracer
enables error checking.

from omnibus.raytrace.colors import ColorMap
from omnibus.raytrace.imager import Imager

colors = ColorMap.from_compositions(model.compositions)
imager = Imager.from_extents(model.geometry, z=0.0, max_pixels=512)
imager.names = [c.name for c in model.compositions]
imager.colors = colors
imager.plot();

WARNING: Geometry errors were encountered

A–109

Note the checkered white and red area in the plot indicating the erroneous boundary. The actual exception
messages (describing in detail the geometry errors) are printed to the terminal rather than this notebook.
However, the error message (similar to the one seen during transport) is visible by disabling error checking
on the plotter:

imager.check_errors = False
try:

imager.plot()
except RuntimeError as e:

print("Oops!", e)

Oops! In universe 'global': Failed to move from left (local volume #0) across left.s␣
↪→(local surface #1) at local point {0.000945598,-0.882813,0} along {1,0,0}: possible␣
↪→neighbors are {left (#0), fill (#2)}, possible nearby volumes are {left (#0), right (
↪→#1), fill (#2), EXTERIOR (#3)}
^^^ at {0.000945597844243196,-0.882812500000009,0} along {1,0,0}

More information on the error can be gleaned by seeing how the geometry appears when tracing rays in the
opposite direction. To do that, a second Imager is constructed with a basis vector opposite from the default
(1, 0, 0):

imager = Imager(model.geometry, (4,-4,0), (-4,4,0), basis=(-1,0,0), max_pixels=512)
imager.names = [c.name for c in model.compositions]
imager.colors = colors
imager.plot();

WARNING: Geometry errors were encountered

A–110

Again the plot shows the erroneous region. Since the basis vector is reversed, so is the x axis. Note that
comparing to the previous plot shows that the overlap between the two circles appears to be a different
material depending on the particle’s direction of travel.

A.4.1.6 Detailed geometry debugging

One final tool for finding and debugging geometry errors is the GG_Debugger class. (For MCNP geometries,
use Lava_Debugger.) Since these tools by default use the C cout/cerr pipes to print, the wurlitzer23 tool is
needed to redirect terminal output to this notebook.

%load_ext wurlitzer
from geometria import GG_Debugger
ggd = GG_Debugger(model.geometry)

We can print detailed information about a particle track through the geometry, including the universes and
surface names. If an error occurs, the detail particle state is printed.

try:
ggd.print_track((-4,-2,0), (1,0,0))

except RuntimeError as e:
print("Caught error:", e)

Caught error: In universe 'global': Failed to move from left (local volume #0) across␣
↪→left.s (local surface #1) at local point {0.5,-2,0} along {1,0,0}: possible neighbors␣
↪→are {left (#0), fill (#2)}, possible nearby volumes are {left (#0), right (#1), fill (
↪→#2), EXTERIOR (#3)}
^^^ at {0.5,-2,0} along {1,0,0}

23 https://github.com/minrk/wurlitzer

A–111

https://github.com/minrk/wurlitzer

Tracking from -4 -2 0 along 1 0 0
POS CUR_CELL CUR_SURF NEXT_DIST UNIV ␣

↪→ LOCAL_POS VOLID SURF_IDX NEXT_IDX
...moved distance 0.535898384862246 to enter geometry
{-3.4641, -2, 0} fill outer.s 0.9641 global{ -3.4641,␣
↪→ -2, 0} 2 0 1
{ -2.5, -2, 0} left left.s 3 global{ -2.5,␣
↪→ -2, 0} 0 0 0
!!! In universe 'global': Failed to move from left (local volume #0) across left.s␣
↪→(local surface #1) at local point {0.5,-2,0} along {1,0,0}: possible neighbors are
↪→{left (#0), fill (#2)}, possible nearby volumes are {left (#0), right (#1), fill (#2),␣
↪→EXTERIOR (#3)}
^^^ at {0.5,-2,0} along {1,0,0}
Failed during surface crossing:

POSITION DIRECTION POLARIZATION
Global: { 0.5, -2, 0}{ 1, 0, 0}{ 0, -1, 0}
Local: { 0.5, -2, 0}{ 1, 0, 0}{ 0, -1, 0}
In cell left (0), matid=2, crossing surface left.s (1)
==================== ======= ==============
UNIVERSE VOL ID CELL LABEL
==================== ======= ==============
global 0 left
==================== ======= ==============

Current volume state for volume ID = 0:
Surface IDs: 1
Senses: {-}
Current and next surface index: 0 -> 0

A.4.2 SHIFT DEPLETION WITH MOVABLE CONTROL RODS

This example demonstrates how to run and post-process a Shift depletion run using an MCNP model with
movable elements.

Set up example environment
import os
from exnihilotools.matplotlib import screen_style
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")
%matplotlib inline
screen_style()

A.4.2.1 Previsualization

Before running the problem, it is useful to render the input geometry for verification. Note that the different
fuel regions (all initially the same composition, but with unique material IDs) are automatically assigned
slightly different shades of red by the ColorMap’s constructor.

from omnibus.raytrace.load import load_mcnp
from omnibus.raytrace.colors import ColorMap
from omnibus.raytrace.imager import Imager

model = load_mcnp(os.path.join(SOURCE_DIR, "data", "movable.mcnp"))

(continues on next page)

A–112

(continued from previous page)

colors = ColorMap.from_compositions(model.compositions)
colors[colors.unassigned] = 'Set3'
imager = Imager(model.geometry,

lower=(-20, 0, -20),
upper=(20, 0, 20),
basis=(1, 0, 0),
max_pixels=1024)

imager.names = [c.name for c in model.compositions]
imager.colors = colors
imager.plot();

Generating MCNP runtpe file...
...finished generating MCNP runtpe file in 2.8 seconds

The model’s composition data can be used to plot number densities in the reactor. The first step in such a
visualization is extracting number densities and their corresponding nuclide IDs from the model’s composi-
tions. Note that zaid returns a view (which for efficiency we translate into a numpy array), whereas calc_nd
returns a vector that is automatically translated to a native python object.

import numpy as np

def calc_number_densities(comp):
return dict(zip(np.asarray(comp.zaid).tolist(), comp.calc_nd()))

def calc_mass_densities(comp):
zaid = np.asarray(comp.zaid)
wt = np.asarray(comp.get_wt_fractions()) * comp.density
return dict(zip(zaid.tolist(), wt.tolist()))

(continues on next page)

A–113

(continued from previous page)

densities = [calc_mass_densities(c) for c in model.compositions]
densities[10]

{1001: 0.06633015932148201,
8016: 0.5422080954790859,
92235: 9.085977478992715,
92238: 0.6606715344205284}

The next step is to extract a particular nuclide’s densities for every pixel’s matid in the raytrace’s view. This
requires a Numpy array of values for each matid. Using np.nan instead of 0.0 means the value will be hidden
rather than rendered as a zero-value, making it more obvious which parts of the problem have trace nuclides
as opposed to none of the nuclide. The pcolor method of the Imager will render an image where the value
of each pixel is calculated from the index in the pcolor argument vector corresponding to the material ID at
that pixel.

def get_dens(zaid):
return np.array([d.get(zaid, np.nan) for d in densities])

u235 = get_dens(92235)
assert u235[10] == densities[10][92235]
assert np.isnan(u235[0])

imager.pcolor(u235);

Here is the mass density plot for hydrogen:

A–114

imager.pcolor(get_dens(1001));

With a little code, it is possible to automate the rendering of all the nuclides in the problem:

from matplotlib.colors import LogNorm
from matplotlib.offsetbox import AnchoredText
import matplotlib.pyplot as plt
from omnibus.db.validator import to_nuclide

zaids = set()
for d in densities:

zaids.update(d.keys())

zaid_to_nuclide = to_nuclide.zaid_to_pretty_nuclide
norm = LogNorm(vmin=0.05, vmax=10.0)

nr = int(np.ceil(np.sqrt(len(zaids))))
fig, axes = plt.subplots(nr, nr, figsize=(9,9))

ijax_iter = np.ndenumerate(axes)
for (zaid, ((i,j), ax)) in zip(sorted(zaids), ijax_iter):

show_colorbar = (i == 0 and j == 0)

Plot the actual densities
imager.pcolor(get_dens(zaid), ax=ax, colorbar=show_colorbar, norm=norm)

Add a nice inset title
at = AnchoredText(zaid_to_nuclide(zaid),

prop=dict(size=8), frameon=True,
loc=2)

(continues on next page)

A–115

(continued from previous page)

at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

Hide tick labels if it's not the outermost plot on the upper left
if i == 0:

ax.xaxis.set_label_position('top')
ax.xaxis.set_ticks_position('top')

else:
ax.set_xlabel("")
ax.set_xticklabels([])

if j != 0:
ax.set_ylabel("")
ax.set_yticklabels([])

Clear remaining axes
for ((i,j), ax) in ijax_iter:

fig.delaxes(ax)

/usr/local/anaconda3/envs/exnihilo/lib/python3.7/site-packages/matplotlib/colors.
↪→py:1028: RuntimeWarning: invalid value encountered in less_equal
mask |= resdat <= 0

A–116

A.4.2.2 Execute Omnibus

The following Omnibus depletion input transports on this model with four kcode solves, using alternating
burn/decay steps. Before the first step, the control rod is moved downward by 10 cm; the next time step it is
moved upward by 5 cm.

%cat {SOURCE_DIR}/data/movable.omn
!omnibus-run {SOURCE_DIR}/data/movable.omn

[PROBLEM]
name "Depletion problem with moving control rod"
mode kcode

[MODEL=mcnp]
input "movable.mcnp"

(continues on next page)

A–117

(continued from previous page)

extents -100 100 -100 100 -100 100

[MODEL][MOVABLE=surfaces control_rod]
surfaces 1 2

[DEPLETION]
deplete_cells 201 202 203

211 212 213
221 222 223

tracking_set "addnux1" ! TRITON "addnux" set
tracking_nuclides na-23 ! additional nuclides to track
! Decay steps
burn_length : decay_length : power : num_burn_steps : num_decay_steps

1.0 1.0 0.005 1 1
1.5 0.7 0.005 1 1

! Write cross sections to HDF5
write_xs true
! Reduce accuracy but reduce run time
predictor_substeps 1
renormalization_method boss

[DEPLETION][MOVE control_rod]
! movement for each time step: -20 is fully inserted, 0 is fully out
delta -10.0 5.0

[PHYSICS=ce]
ce_lib ce_v71
mode n

[SOURCE=separable fission]
[SOURCE][SHAPE=box]
box -3.25 3.25 -3.25 3.25 -9.0 9.0

[SHIFT]

[.][KCODE]
num_histories_per_cycle 1000
num_cycles 20
num_inactive_cycles 5

[TALLY]
[.][CYLMESH globalcyl]
reactions flux nu_fission
r 0 4.33012702 6.12372436 7.5 9.5 12 20 50
theta 0 3i 1.0
z -20 -15 -9 5i 9 15 20

[..][CELL fuel]
reactions flux nu_fission
cells 201 202 203

211 212 213
221 222 223

(continues on next page)

A–118

(continued from previous page)

nbins 1e7 39ilog 1e-3

[RUN=mpi]
np 4
INFO: Starting Omnibus preprocessor, omnibus version 6.3.pre-b10 (branch 'omnibus-doc'
↪→#98d73c8e on 2020MAR11)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/movable.omn

...finished loading problem db from Omnibus ASCII file
Loading problem db from Python file...

...finished loading problem db from Python file
INFO: Set default for 'mpiexec_args' to '['-np', '4']' in '/run'
Generating MCNP runtpe file...

...finished generating MCNP runtpe file
INFO: Set default for 'energy' to '{'_type': 'watt'}' in '/source/fission'
INFO: Defaulting Watt spectrum to U-235
INFO: Set default for 'angle' to '{'_type': 'isotropic'}' in '/source/fission'
INFO: Set default for 'fissionable_only' to 'True' in '/source/fission'
INFO: Set default for 'xs_cache' to 'totfisnu' in '/physics/ce'
INFO: Set default for 'xs_accel' to 'True' in '/physics/ce'
INFO: Set default for 'fission_neutrons' to 'False' in '/physics/ce/fission'
INFO: Set default for 'load_scl' to 'True' in '/comp'
INFO: Set default for 'decomposition' to '{'_type': 'none'}' in '/shift'
INFO: Set default for 'verbosity' to 'none' in '/shift/transporter'
INFO: Set default for 'method' to 'roulette' in '/shift/vr'
INFO: Writing Omnibus input ParameterList to movable.inp.xml
INFO: Writing preprocessed file to movable.pp.json
INFO: Writing processed ASCII input to 'movable.inp.omn'
INFO: Launching Omnibus driver on 4 cores
Running Omnibus...
WARNING: The Exnihilo software revision (r540) used to generate the input file differs␣
↪→from this version being used to run it (r539).
WARNING: This could cause internal consistency checks to unexpectedly fail, and it could␣
↪→even lead to unexpected database value changes.
WARNING: Please check your output very carefully after this run to make sure the␣
↪→interpreted values match your input values.
Building model
INFO: Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib
INFO: Loading compositions from MCNP input
INFO: Creating default boundary mesh from (-100 -100 -100) to (100 100 100) for MCNP␣
↪→geometry
Building physics 'ce'
INFO: Loading CE library /usr/local/scale/hpcdata/ce_v7.1_endf.h5
INFO: Corrected thermal xs balance: 1.2e-05% error in h-1 @ 293.6K
Building tallies
Building sources
Building Shift solver internals
Building Shift sources
Initializing Shift solver
Building depletion solver internals

(continues on next page)

A–119

(continued from previous page)

INFO: Using the default VESTA group structure in the depletion tally
Building depletion material data
INFO: Loading ORIGEN library /usr/local/scale/data/origen_library/pwr.rev03.orglib
INFO: Loading fission yield library /usr/local/scale/data/origen_data/origen.rev05.yields.
↪→data
INFO: Loading JEFF multigroup library /usr/local/scale/data/origen.rev01.jeff252g
Loading depletion cross sections
INFO: Total initial heavy-metal mass in system: 0.0310027 MT
Building Shift tallies
Solving depletion step 0 from 0 days to 1 days at 0.005 MW
INFO: Moving control_rod by -10 cm
Running Shift transport calculation
Beginning inactive cycles
INFO: Completed 5 inactive cycles
Beginning active cycles
INFO: Completed 15 active cycles
Collapsing cross sections
Writing tally results
Solving depletion step 1 from 1 days to 2 days at 0 MW
INFO: Deleted delayed fission data because the CE data lacks a delayed fission spectrum:␣
↪→cm-243 @ 293K, am-242m @ 293K
Running Shift transport calculation
Beginning inactive cycles
INFO: Completed 5 inactive cycles
Beginning active cycles
INFO: Completed 15 active cycles
Collapsing cross sections
Writing tally results
Solving depletion step 2 from 2 days to 3.5 days at 0.005 MW
INFO: Moving control_rod by 5 cm
Running Shift transport calculation
Beginning inactive cycles
INFO: Completed 5 inactive cycles
Beginning active cycles
INFO: Completed 15 active cycles
Collapsing cross sections
Writing tally results
Solving depletion step 3 from 3.5 days to 4.2 days at 0 MW
Running Shift transport calculation
Beginning inactive cycles
INFO: Completed 5 inactive cycles
Beginning active cycles
INFO: Completed 15 active cycles
Collapsing cross sections
Writing tally results
Running Shift transport calculation
Beginning inactive cycles
INFO: Completed 5 inactive cycles
Beginning active cycles
INFO: Completed 15 active cycles
Collapsing cross sections
Writing tally results

(continues on next page)

A–120

(continued from previous page)

WARNING: The first and second halves of the active cycles have statistically different (3.
↪→75514 sigma) Shannon entropy
Run complete
Cleaning up

...finished running Omnibus in 11.2 seconds
Running Omnibus postprocessing
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'movable.out.h5', problem name 'Depletion problem␣
↪→with moving control rod', created on 2020MAR11 22:38 using SCALE version 6.3.pre-b10␣
↪→(branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Loading HDF5 file...
INFO: Loaded Omnibus output data from 'movable.out.h5', problem name 'Depletion problem␣
↪→with moving control rod', created on 2020MAR11 22:38 using SCALE version 6.3.pre-b10␣
↪→(branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file
Plotting k-effective and related diagnostics...
/rnsdhpc/code/build/Exnihilo-examples/Exnihilo/packages/Omnibus/python/omnibus/formats/
↪→tally/field.py:308: FutureWarning: Using a non-tuple sequence for multidimensional␣
↪→indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future␣
↪→this will be interpreted as an array index, `arr[np.array(seq)]`, which will result␣
↪→either in an error or a different result.
mom = data[slc]

INFO: Saved k-eff plot to movable.keff.pdf
...finished plotting k-effective and related diagnostics in 1.4 seconds

Writing cell tally results to CSV files...
INFO: Wrote cell tally 'fuel' to movable.fuel.t0.csv
INFO: Wrote cell tally 'fuel' to movable.fuel.t1.csv
INFO: Wrote cell tally 'fuel' to movable.fuel.t2.csv
INFO: Wrote cell tally 'fuel' to movable.fuel.t3.csv
INFO: Wrote cell tally 'fuel' to movable.fuel.t4.csv

...finished writing cell tally results to CSV files
Writing mesh tally visualization file...

...finished writing mesh tally visualization file
Writing depletion number densities...
INFO: Not creating number density CSV file because it would be too large (expected size␣
↪→1289 kB exceeds user-given size 4000000); set the 'csv_max' parameter or use Python␣
↪→tools

...finished writing depletion number densities
Writing depletion cross sections...
Writing cross sections to CSV...

...finished writing cross sections to CSV
INFO: Wrote depletion cross sections to movable.xs.csv

...finished writing depletion cross sections
Building RST summary...
INFO: Wrote summary file to movable.rst

...finished building RST summary

The output file produced includes all the data from the run: debug information, system information, log
messages, etc.

A–121

from omnibus.formats.output import load
output = load("movable.out.h5")
output

Loading HDF5 file...
INFO: Loaded Omnibus output data from 'movable.out.h5', problem name 'Depletion problem␣
↪→with moving control rod', created on 2020MAR11 22:38 using SCALE version 6.3.pre-b10␣
↪→(branch 'omnibus-doc' #17579cc6 on 2020MAR10)

...finished loading HDF5 file

For example, the compositions can be extracted and printed (only a subset is shown here, for brevity):

output['comp']['compositions'].tolist()[1:3]

[{'matid': 1,
'name': 'm20',
'temperature': 293.59433519120626,
'density': 2.688233813164135,
'fissionable': False,
'depletable': False,
'zaid': array([13027], dtype=uint32),
'wtfrac': array([1.])},

{'matid': 2,
'name': 'm30',
'temperature': 293.59433519120626,
'density': 4.180967304626936,
'fissionable': False,
'depletable': False,
'zaid': array([8016, 13027, 63151, 63153], dtype=uint32),
'wtfrac': array([0.0784097 , 0.42199784, 0.23721664, 0.26237582])}]

The following block of code extracts all the output groups that correspond to an Omnibus run sequence, and
then sorts them by their execution order (the index accessor).

memory = [(name, block['peak_memory'].data['global'])
for (name, block) in output.items() if 'peak_memory' in block]

memory.sort(key=(lambda n_pm: output[n_pm[0]].index))
memory

[('system', 223484),
('model', 315388),
('comp', 315552),
('physics-ce', 780108),
('tally', 1669588),
('source', 781292),
('depletion', 1668844),
('shift', 1821808)]

The ‘tally’ memory usage is higher than the ‘source’ usage due to an internal implementation detail. (The
tallies are initialized before the source but saved after the depletion tallies have been created.)

A–122

A.4.2.3 Visualize tally results

tallies = output['tally']
cyltal = tallies['globalcyl']
assert cyltal is tallies.globalcyl
cyltal = cyltal.extract()
cyltal

The num_histories field is the number of active histories per depletion step. The total field contains
energy-integrated tallies:

cyltal = cyltal.total
cyltal

The tallies can be “sliced” along any of the axes at any of the values. The following code plots the tally
estimate of the scalar flux at the initial time step, integrated over all the theta bins.

from omnibus.data import plot
plot(cyltal.xs(step='t0', multiplier='flux').sum('theta'));

A slice along the z axis, instead of an integral over the polar axis, yields a polar pseudocolor plot.

flux = cyltal.xs(step='t3', multiplier='flux', z=0.0)
plot(flux.mean)
plot(flux.re);

A–123

Cell tallies can also be plotted:

celltal = tallies['fuel'].extract()
binned_tally = celltal['binned']
print(binned_tally.mesh('cell'))
binned_tally

A–124

['201' '202' '203' '211' '212' '213' '221' '222' '223']

plot(binned_tally.xs(step='t0', multiplier='flux', stat='mean', cell='213'),
logy=True);

From the spectrum, this is clearly a fast reactor.

In conjunction with the Imager, cell tally results can actually be rendered onto the geometry with a ray trace.
Here is a slice of the cells in the geometry at y = 0:

imager = Imager(model.geometry,
lower=(-20, 0, -20),
upper=(20, 0, 20),
basis=(1, 0, 0),
max_pixels=1024,
trace='cell')

imager.plot();

A–125

Plotting the reaction rates in each cell requires one-dimensional data (one value per cell), so here are the
energy-integrated fluxes at one particular time step.

cell_production = celltal.total.xs(step='t3', stat='mean', multiplier='nu_fission')
print(cell_production.selection)
print("Active dimensions:", cell_production.dims)
imager.pcolor(cell_production.data, labels=cell_production.mesh('cell'));

step = t3; multiplier = nu_fission; stat = mean
Active dimensions: ['cell']

A–126

A.4.2.4 Visualize depletion results

Additional processing and visualization can be peformed from the number densities and one-group cross
sections in the depletion output.

Reduce number of output rows to keep the documentation small
import pandas as pd
pd.options.display.max_rows = 15

depl = output['depletion']
depl

The number density is a function of step, cell, and ZAID. Note that to support restart capability, the
“zaid” axis has duplicate entries in it, since ORIGEN tracks some nuclides multiple times. A built-in
collapse_nuclides function consolidates these nuclides. Calling this function on a field will pull the
entire dataset from disk and return a new field with the collapsed nuclides. This is going to be memory-,
disk-, and CPU-intensive, so it is not a bad idea to slice the data first to reduce the amount of work that has to
be done if the entire result is not needed.

num_dens = depl.num_dens
num_dens

num_dens = num_dens.collapse_nuclides()
num_dens

Note that the data entry of the initial num_dens points to an on-disk HDF5 object, whereas after collapsing
nuclides the data is an in-memory Numpy array.

A–127

Convert xenon densities to a Pandas dataframe
xe_dens = num_dens.xs(zaid=to_nuclide('xe-135')).to_series().unstack('cell')
xe_dens

/rnsdhpc/code/build/Exnihilo-examples/Exnihilo/packages/Omnibus/python/omnibus/data/field.
↪→py:692: FutureWarning: the 'labels' keyword is deprecated, use 'codes' instead
index = pd.MultiIndex(levels=levels, labels=labels, names=names)

Change indexing from labels to actual simulated time
simtime = depl.simtime.extract()
xe_dens.index = simtime.data

Plot number densities in each cell
ax = xe_dens.plot(marker='x')
ax.set_ylabel("Xe-135 density ({})".format(num_dens.units))
ax.set_xlabel("Time ({})".format(simtime.units))

Plot power
power = depl.totpower.extract()
ax2 = ax.twinx()
ax2.plot(simtime.data, power.data, drawstyle='steps-post', linewidth=2, color=(0,0,0,.5))
ax2.set_ylabel("Power ({})".format(power.units))

Text(0, 0.5, 'Power (MW)')

The collapsed cross sections are stored in a single array that holds (ZAID,MT) pairs (since not all nuclides
have all reaction types). Because the omnibus.data.Field class is built for only regular multi-dimensional
data (no ragged edges), it can be easier to process this field using the Pandas package. The to_series

A–128

function converts a field into a Pandas series. The zaid_mt axis gets expanded into two different “levels” in
a pandas.MultiIndex object.

Print a table of cross sections, with step/zaid/mt as rows
xs = depl['xs'].to_series().unstack('cell')
xs

/rnsdhpc/code/build/Exnihilo-examples/Exnihilo/packages/Omnibus/python/omnibus/data/field.
↪→py:652: FutureWarning: .labels was deprecated in version 0.24.0. Use .codes instead.
lab[:] = list(zip(*mi.labels))

Tabulate just the fission cross sections
_.xs(18, level='mt')

View U-235 cross sections as a function of time in each of the different cells
_.xs(92235, level='zaid').plot();

A.4.3 CUSTOM COMPOSITIONS IN OMNIBUS

The Omnibus [COMP][MATERIAL] block is convenient for defining small numbers of compositions with few
nuclides, but it can be tedious to use for more complex inputs, and especially tedious if the compositions are
already defined in another input model. This example demonstrates how to extract compositions from an
existing SCALE input and use them in an Omnibus problem with a Geometria-based geometry.

Set up example environment
import os
from exnihilotools.matplotlib import screen_style
SOURCE_DIR = os.environ.get("SOURCE_DIR", ".")
%matplotlib inline

(continues on next page)

A–129

(continued from previous page)

%load_ext wurlitzer
screen_style()

A.4.3.1 Load existing compositions

Loading the SCALE model provides access to both the geometry definition and the compositions. The
_asdict method of a composition object allows it to be rendered as a native Python dictionary for easy
perusal.

from omnibus.raytrace.load import load_scale
scale_model = load_scale(os.path.join(SOURCE_DIR, "data", "godiva-keno.inp"))
comps = [c._asdict() for c in scale_model.compositions]
comps

>>> Using SCALE geometry from 'csas6' sequence.
>>> Loading SCALE Standard Composition Library from /usr/local/scale/data/scale.rev40.
↪→sclib

[{'name': 'void',
'matid': 0,
'temperature': 1e-07,
'density': 0.0,
'fissionable': False,
'depletable': False,
'zaid': array([], dtype=uint32),
'wtfrac': array([], dtype=float64)},

{'name': 'media 1',
'matid': 1,
'temperature': 293.0,
'density': 18.739884256874777,
'fissionable': True,
'depletable': True,
'zaid': array([92234, 92235, 92238], dtype=uint32),
'wtfrac': array([0.01019995, 0.93709968, 0.05270038])}]

A.4.3.2 Exporting compositions

The compositions can be immediately saved to disk if they do not need modification:

from robus import save_hdf5_compositions
save_hdf5_compositions("godiva_keno.comp.h5", scale_model.compositions)

Changing the names and ordering of the compositions demonstrate some of the capabilities of the Python
representation of the compositions. Writing Python objects to HDF5 requires the Omnibus format wrappers
(usually seen when processing existing Omnibus output files).

import h5py
from omnibus.data import dump_root
from omnibus.formats.comp import Compositions, CompBlock

(continues on next page)

A–130

(continued from previous page)

Create a compositions object with modified properties
comps[1]['name'] = 'uranium'
comps = [comps[1], comps[0]]

TODO: this may not be necessary for Omnibus, but it currently is necessary for␣
↪→raytracing
for matid, c in enumerate(comps):

c['matid'] = matid

export_comps = Compositions.from_list(comps)
export_comp_block = CompBlock(data={'compositions': export_comps})
with h5py.File(os.path.join(SOURCE_DIR, "data", "godiva-gg.comps.h5"), 'w') as f:

dump_root(export_comp_block, f)

A.4.3.3 Using compositions with GG

Now that updated compositions have been computed, they can be loaded as part of the Geometria model
for raytracing. Although this example uses compositions loaded directly from a SCALE model, it is also
possible to directly use compositions loaded from an existing Omnibus HDF5 output file, in which case
export_comps here would be replaced by output_file['comp']['compositions'].

from omnibus.raytrace.load import load_gg
model = load_gg(os.path.join(SOURCE_DIR, "data", "godiva.gg.omn"),

compositions=export_comps)

Generating Geometria XML input file from .gg.omn...
INFO: Starting Geometria preprocessor, omnibus version 6.3.pre-b11 (branch 'comp-example
↪→' #4d164aa1 on 2020APR14)
Loading problem db from Omnibus ASCII file...
Loading Omnibus input file at /rnsdhpc/code/src/scale/Exnihilo/packages/Omnibus/driver/
↪→example/data/godiva.gg.omn

...finished loading problem db from Omnibus ASCII file
INFO: Writing Geometria input ParameterList to godiva.gg.xml

...finished generating Geometria XML input file from .gg.omn

from omnibus.raytrace.colors import ColorMap
from omnibus.raytrace.imager import Imager

colors = ColorMap.from_compositions(model.compositions)
imager = Imager.from_extents(model.geometry, z=0.0)
imager.names = [c.name for c in model.compositions]
imager.colors = colors
imager.plot();

A–131

A.5 CE DATA

A.5.1 INTERACTING WITH CE CROSS SECTION DATA

This example demonstrates some basic tools for interacting with AMPX-processed continuous energy cross
sections.

Set up example
%matplotlib inline
from exnihilotools.matplotlib import screen_style, grid
screen_style()

Providing various options to the Library loader, such as disabling the loading of kinematics data, will reduce
data load times and memory consumption. Printing the database after loading shows the defaults for other
options not provided in the input database.

from nemesis import cmake_config, Std_DB, make_view, make_const_view
from robus import Library
from omnibus.db.validator import mt_to_str, to_mt, to_nuclide
from omnibus.scale import ce_file_resolver

db = Std_DB.from_dict({
'ce_lib_path': ce_file_resolver.resolve("ce_v7.1_endf"),
'gamma_production': False,
'kinematics': False,
'reactions': [to_mt(k) for k in """N_TOTAL N_ELASTIC N_FISSION N_ABSORPTION

N_N_X1 N_N_XC N_GAMMA N_NU N_SAB""".split()],
'broaden_db': {

'kinematics': False,
}

(continues on next page)

A–132

(continued from previous page)

})
library = Library(db)
print(db)

/rnsdhpc/code/install/Exnihilo/python/omnibus/__init__.py:93: UserWarning: Version␣
↪→mismatch between 'exnihilotools' and 'omnibus' packages: 6.3.pre-b10 (branch 'omnibus-
↪→doc' #98d73c8e on 2020MAR11) (at /rnsdhpc/code/build/Exnihilo-examples/Exnihilo/
↪→packages/Nemesis/python/exnihilotools/__init__.py) is not the same as 6.3.pre-b10␣
↪→(branch 'fix-origen-install' #b3af8ef1 on 2020MAR06) (at /rnsdhpc/code/install/Exnihilo/
↪→python/omnibus/__init__.py); This is probably because of a PYTHONPATH error and may␣
↪→cause unexpected failures on import
UserWarning)

##
Path: /std_db

Database for std_db has:
2 integer entries
5 double entries
9 bool entries
1 string entries
7 vector<int> entries
0 vector<double> entries
0 vector<string> entries
0 vector<bool> entries
1 nested database entries

==
Entries in std_db database
==
integer entries
--

sizeof_data_float 4
sizeof_energy_float 8

double entries
--

ethermal 10
n_energy_max 2e+07
n_energy_min 1e-05
p_energy_max 2.5e+07
p_energy_min 10000

bool entries
--

collision_moments 0
collision_pdf 0

collision_probabilities 0
dbrc 1

gamma_production 0
kinematics 0

(continues on next page)

A–133

(continued from previous page)

missing_as_zero 0
probability_tables 1

unionize_energy 0

string entries
--

ce_lib_path/usr/local/scale/hpcdata/ce_v7.1_endf.h5

vector<int> entries (number of elements)
--

omit_zaid_n 0
omit_zaid_p 0
orig_zaid_n 0
orig_zaid_p 0
reactions 9

subs_zaid_n 0
subs_zaid_p 0

##
Path: /std_db/broaden_db

Database for broaden_db has:
0 integer entries
1 double entries
2 bool entries
0 string entries
0 vector<int> entries
0 vector<double> entries
0 vector<string> entries
0 vector<bool> entries
0 nested database entries

==
Entries in broaden_db database
==
double entries
--

temperature_tol 4

bool entries
--

kinematics 0
legacy 0

##
##

A.5.1.1 Analyze energy grid spacing

How are the energy grid points distributed for water-bound hydrogen? The Exnihilo python bindings can
extract any property of the physics data and manipulate it natively in Python. Here, the ubiquitous Numpy
package’s powerful math utilities are used to plot a distribution of the relative spacing of the energy grid

A–134

points.

import numpy as np
import matplotlib.pyplot as plt

def centers(x):
return (x[:-1] + x[1:]) * 0.5

nucl = library.load_nuclide_n(1001, 293)
rxn = nucl.get_reaction(to_mt("N_TOTAL"))
energy = np.asarray(rxn.energy)

delta_e = np.diff(energy)
energy_mid = centers(energy)
relative_delta_e = delta_e

(fig, ax) = plt.subplots(subplot_kw=dict(xscale='log', yscale='log'))
ax.hist(relative_delta_e, bins=np.logspace(-15,0,31));
grid(ax, 'both')

Plotting as a function of energy reveals that the thermal range has lots of micro-sized points, likely a result of
AMPX processing of the thermal scattering.

def plot_rel_spacing(energy_mid, delta_e):
(fig, ax) = plt.subplots(subplot_kw=dict(xscale='log', yscale='log'))
ax.plot(energy_mid, delta_e/energy_mid, linestyle='none', marker='.')
ax.set_xlabel("Energy [eV]")
ax.set_ylabel("Relative spacing of grid points")
grid(ax, which='major')
return ax

plot_rel_spacing(energy_mid, delta_e);

A–135

Comparing against free-gas hydrogen confirms that the artifacts are related to the bound cross section
treatment:

nucl = library.load_nuclide_n(8001001, 293)
rxn = nucl.get_reaction(to_mt("N_TOTAL"))
energy = np.asarray(rxn.energy)

ax = plot_rel_spacing(centers(energy), np.diff(energy))
ax.set_ylim(1e-15, 1);

A–136

A.5.1.2 Resonance broadening

This example shows how Doppler broadening affects the cross sections of a large iron resonance. The
broaden_db option passed to the Library above enables run-time broadening of cross sections, even if not
previously generated for the CE library being used.

zaid = to_nuclide('Fe-56')
print("Nuclide ID: ", zaid)
rxn_mt = to_mt("N_TOTAL")
print("Reaction MT:", mt_to_str(rxn_mt))

Pre-load temperatures, including interpolated at midpoint
temperatures = sorted(set(library.get_temperatures(zaid)) | {420, 750, 900, 1800})
library.load_nuclide_n(zaid, temperatures)

nuclides = [library.load_nuclide_n(zaid, t) for t in temperatures]
print("Loaded temperatures: " + ", ".join(str(nucl.temperature) for nucl in nuclides))

Nuclide ID: 26056
Reaction MT: 1=N_TOTAL
Loaded temperatures: 293.0, 420.0, 565.0, 600.0, 750.0, 900.0, 1200.0, 1800.0, 2000.0,␣
↪→2400.0

Plot an overall view of the cross sections:

nucl = nuclides[0]
rxn = nucl.get_reaction(rxn_mt)

def get_desc(nucl, rxn):
return "{:s} at {:.1f} for MT {:s}".format(

(continues on next page)

A–137

(continued from previous page)

to_nuclide.zaid_to_pretty_nuclide(nucl.zaid),
nucl.temperature,
to_mt.to_str(rxn.mt))

(fig, ax) = plt.subplots()
ax.loglog(rxn.energy, rxn.xs, '-')
ax.set_title(get_desc(nucl, rxn))
grid(ax)

A close-up visualization of the lowest-energy resonance shows how the cross sections vary as a function of
temperature:

from matplotlib.cm import get_cmap
from matplotlib.colors import LogNorm
cmap = get_cmap('coolwarm')
norm = LogNorm(vmin=nuclides[0].temperature, vmax=nuclides[-1].temperature)

(fig, ax) = plt.subplots()
ax.set_xlim(1140, 1160)
ax.set_ylim(0, 100)
for nucl in nuclides:

rxn = nucl.get_reaction(rxn_mt)
plt.plot(rxn.energy, rxn.xs,'-o',

markeredgecolor="none", markersize=2,
label="{:.1f}".format(nucl.temperature),
color=cmap(norm(nucl.temperature)))

ax.legend(loc="upper right")
grid(ax)

A–138

The values at the cross sections at the peaks of these resonances can be found using Numpy:

for nucl in nuclides:
rxn = nucl.get_reaction(rxn_mt)
e = np.asarray(rxn.energy)
xs = np.asarray(rxn.xs)
erange = (e > 1100) & (e < 1200)
max_local_index = np.argmax(xs[erange])
max_index = np.where(erange)[0][max_local_index]
print("For {:s} at {:7.1f}, resonance peaks at index {:d} "

"(E = {:.3f} eV) with sigma = {:.1f} cm^-1".format(
to_nuclide.zaid_to_pretty_nuclide(nucl.zaid),
nucl.temperature, max_index, e[max_index], xs[max_index]))

For Fe-56 at 293.0, resonance peaks at index 613 (E = 1149.700 eV) with sigma = 79.4␣
↪→cm^-1
For Fe-56 at 420.0, resonance peaks at index 436 (E = 1149.748 eV) with sigma = 70.0␣
↪→cm^-1
For Fe-56 at 565.0, resonance peaks at index 612 (E = 1149.700 eV) with sigma = 62.9␣
↪→cm^-1
For Fe-56 at 600.0, resonance peaks at index 612 (E = 1149.700 eV) with sigma = 61.6␣
↪→cm^-1
For Fe-56 at 750.0, resonance peaks at index 436 (E = 1149.748 eV) with sigma = 56.8␣
↪→cm^-1
For Fe-56 at 900.0, resonance peaks at index 606 (E = 1149.700 eV) with sigma = 53.2␣
↪→cm^-1
For Fe-56 at 1200.0, resonance peaks at index 606 (E = 1149.700 eV) with sigma = 47.9␣
↪→cm^-1
For Fe-56 at 1800.0, resonance peaks at index 436 (E = 1149.748 eV) with sigma = 41.6␣
↪→cm^-1
For Fe-56 at 2000.0, resonance peaks at index 614 (E = 1149.597 eV) with sigma = 39.9␣
↪→cm^-1

(continues on next page)

A–139

(continued from previous page)

For Fe-56 at 2400.0, resonance peaks at index 617 (E = 1149.597 eV) with sigma = 37.5␣
↪→cm^-1

A.5.1.3 Cross section interpolation

The Python methods in this notebook directly access the underlying Shift C++ data using Numpy arrays,
with no copying, enabling high performance (speed of C rather than Python) operations on large data sets.
This example demonstrates the performance of interpolating the hydrogen cross section onto a 100k-point
energy grid.

nucl = library.load_nuclide_n(1001, 600.0)
rxn = nucl.get_reaction(1)
print("Reaction: MT {:s} from {:s} at {:.1f}K".format(

to_mt.to_str(rxn.mt),
to_nuclide.zaid_to_pretty_nuclide(nucl.zaid),
nucl.temperature,))

from physica import calc_micro_xs
interp_energy = np.logspace(-3, 6, 100000)
interp_xs = np.zeros_like(interp_energy, dtype='float32')
print("Interpolation time:")
%timeit calc_micro_xs(rxn, make_const_view(interp_energy), make_view(interp_xs))

Reaction: MT 1=N_TOTAL from H-1 at 600.0K
Interpolation time:
1.24 ms ? 19.5 ?s per loop (mean ? std. dev. of 7 runs, 1000 loops each)

A.5.1.4 Find nonlinear interpolation schemes

Most of the SCALE cross sections use linear-linear interpolation. To check whether any nonlinear interpola-
tion is used at all, one can loop through all reactions in all nuclides. To reduce load time, gamma production
data and kinematics (collision) data are ignored.

from robus import NEUTRON

library = Library(Std_DB.from_dict({
'ce_lib_path': ce_file_resolver.resolve("ce_v71"),
'gamma_production': False,
'kinematics': False,
'probability_tables': False

}))

for zaid in library.get_zaids(NEUTRON):
temperature = 300.
nucl = library.load_nuclide_n(zaid, temperature)
for mt in nucl.get_mts():

rxn = nucl.get_reaction(mt)
if rxn.find_interpolation(0) != 2:

print(zaid, mt)

A–140

88223 452
88226 452

The two nonlinear interpolations are for nu (average neutron yield per fission) in two isotopes of radium!

(fig, axes) = plt.subplots(2, 2, figsize=(8,8))

for (i, zaid) in enumerate([88223, 88226]):
nucl = library.load_nuclide_n(zaid, 293)
for (j, mt) in enumerate([452, 18]):

ax = axes[i, j]
rxn = nucl.get_reaction(mt)
ax.loglog(rxn.energy, rxn.xs, '-o',

markeredgecolor="none", markersize=3)
ax.set_title(get_desc(nucl, rxn))
ax.set_xlabel("E [eV]")
ax.set_ylabel("σ")

plt.tight_layout()

A–141

It is exceedingly odd that Radium has fission and production reactions, and that its fission reaction has that
obviously nonphysical shape. This has the smell of bad ENDF data.

A.5.1.5 Debug errors during broadening

During testing of a new feature, Shift developers discovered that the highest few energy grid points in Fe-56
were being broadened strangely, producing large relative errors. Additionally, broadening of MT=5 failed.
This section shows some of the steps taken to debug the failure.

db = Std_DB.from_dict({
'ce_lib_path': ce_file_resolver.resolve("ce_v71"),
'gamma_production': False,
'kinematics': False,

(continues on next page)

A–142

(continued from previous page)

})
library = Library(db)
nucl = library.load_nuclide_n(26056, 300.0)
rxn = nucl.get_reaction(1)

The cross sections for the highest energies are plotted here:

(fig, ax) = plt.subplots()
ax.plot(rxn.energy, rxn.xs,'-o',

markeredgecolor="none", markersize=4,)

(energy, xs) = (np.asarray(v) for v in (rxn.energy, rxn.xs))
ax.set_xlim(energy[-5], 2 * energy[-1] - energy[-5])
ax.set_ylim(.8 * xs[-1], 1.2 * xs[-1])
ax.set_title(get_desc(nucl, rxn))
ax.grid();

print("Final energy points:", energy[-5:])

Final energy points: [19999508.63125662 19999749.43095107 19999754.31487379 20000000.
20000010.]

Note that the discontinous point at the end of the cross section is above the maximum requested energy,
indicating an error in the CE data processing.

Next let’s look at MT 5, which was crashing because it had fewer than ~6 energy grid points.

A–143

rxn = nucl.get_reaction(5)
print("Energy:", np.asarray(rxn.energy))
print("XS: ", np.asarray(rxn.xs))

(fig, ax) = plt.subplots()
ax.semilogx(rxn.energy, rxn.xs, 'b-x')
ax.set_title(get_desc(nucl, rxn));

Energy: [1.00000002e+02 2.00000000e+07 2.00000100e+07]
XS: [0. 0. 1.29554]

This AMPX internal-use implementation MT is also clearly nonphysical.

A.5.2 UNRESOLVED RESONANCE REGION DATA

Shift uses AMPX-generated probability table data to evaluate particle cross sections in the unresolved
resonance region (URR), where at a single “energy” a particle may encounter a range of cross sections.

from nemesis import Std_DB, make_view, make_const_view
from robus import Library, data_path
from physica import calc_micro_xs
from omnibus.db.validator import mt_to_str, to_mt, to_nuclide
from omnibus.scale import ce_file_resolver

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
from matplotlib.colors import Normalize, LogNorm

%matplotlib inline

(continues on next page)

A–144

(continued from previous page)

from exnihilotools.matplotlib import screen_style
screen_style()

/rnsdhpc/code/install/Exnihilo/python/omnibus/__init__.py:93: UserWarning: Version␣
↪→mismatch between 'exnihilotools' and 'omnibus' packages: 6.3.pre-b10 (branch 'omnibus-
↪→doc' #98d73c8e on 2020MAR11) (at /rnsdhpc/code/build/Exnihilo-examples/Exnihilo/
↪→packages/Nemesis/python/exnihilotools/__init__.py) is not the same as 6.3.pre-b10␣
↪→(branch 'fix-origen-install' #b3af8ef1 on 2020MAR06) (at /rnsdhpc/code/install/Exnihilo/
↪→python/omnibus/__init__.py); This is probably because of a PYTHONPATH error and may␣
↪→cause unexpected failures on import
UserWarning)

def which_ptables(nucl):
ptable_mts = []
for mt in nucl.get_mts():

rxn = nucl.get_reaction(mt)
if rxn.has_ptable:

ptable_mts.append(mt)
return ptable_mts

def extract_ptable(nucl, mt):
assert nucl.has_reaction(mt)
rxn = nucl.get_reaction(mt)
assert rxn.has_ptable
ptable = rxn.ptable
energy = np.asarray(ptable.energy)
Make a table out of the multiband cross sections at each energy
xs_elastic = np.array([ptable.xs(ei) for ei in range(len(energy))])
return (energy, xs_elastic)

def plot_ptable_and_mean(nucl, mt):
(energy, ptable) = extract_ptable(nucl, mt)
Extract reported mean values from no-ptable energy grid
rxn = nucl.get_reaction(mt)
noptab_energy = np.asarray(rxn.energy)
noptab_xs = np.asarray(rxn.xs)

Calculate the mean of the ptable bands (OK since equiprobable)
ptab_mean = np.mean(ptable, axis=1)

cmap = get_cmap('srj_rainbow')
norm = Normalize(vmin=0, vmax=ptable.shape[1])

(fig, ax) = plt.subplots(figsize=(8,4))
for band in range(ptable.shape[1]):

ax.loglog(energy, ptable[:,band],'-o',
color=cmap(norm(band)),
markeredgecolor="none", markersize=2,)

ax.plot(energy, ptab_mean, 'k-', linewidth=2)
ax.plot(noptab_energy, noptab_xs, 'r--', linewidth=2)

(continues on next page)

A–145

(continued from previous page)

ax.grid()
ax.grid(axis='x', which='minor')
ax.set_axisbelow(True)
ax.set_xlim(.7 * energy[0], 1.4 * energy[-1])
ax.set_ylim(.5 * np.min(ptable), 2 * np.max(ptable));

db = Std_DB.from_dict({
'ce_lib_path': data_path("ce_v71"),
})

library = Library(db)

A.5.2.1 Tungsten

nucl = library.load_nuclide_n(74186, 300)
library.flush_warnings()
print("Reactions with probability table data:",

", ".join(mt_to_str(mt) for mt in which_ptables(nucl)))

Reactions with probability table data: 1=N_TOTAL, 2=N_ELASTIC, 102=N_GAMMA

Print the energy points, as well as the table shape (energy points, cross section bands)

(energy, ptable) = extract_ptable(nucl, to_mt("N_TOTAL"))
print(energy)
print(ptable.shape)

[8500. 9000. 10000. 11000. 12000. 13000. 14000. 15000. 16000.
17000. 18000. 20000. 22000. 22500. 25000. 27500. 30000. 32500.
35000. 37500. 40000. 45000. 50000. 55000. 60000. 65000. 70000.
80000. 90000. 95000. 100000.]

(31, 20)

Plot the total cross section at each of the cross section bands and compare it to the mean cross section value.
Since the probability table bands at each cross section are discrete and equiprobable, the “mean” cross section
provided by the library should equal the mean value across bands:

plot_ptable_and_mean(nucl, mt=1)

A–146

A.5.2.2 Uranium 235

The MT=1 (total neutron cross section) probability table data stored in AMPX data is defined as the sum of
the other probability table reactions, even if other non-probability-table reactions are present. In other words,
for every energy point i and every probability band b:

σt,i,b =
∑︁

x∈{e,f,g}

σx,i,b

nucl = library.load_nuclide_n(92235, 300)
library.flush_warnings()
print("Reactions with probability table data:",

", ".join(mt_to_str(mt) for mt in which_ptables(nucl)))

xs = {}
for k in "total elastic fission gamma".split():

(energy, ptab_xs) = extract_ptable(nucl, to_mt("N_" + k.upper()))
xs[k[0]] = ptab_xs

delta = xs['t'] - xs['e'] - xs['f'] - xs['g']
rel_err = np.abs(delta / xs['t'])
print("Maximum relative error:", np.max(np.abs(delta / xs['t'])))

Reactions with probability table data: 1=N_TOTAL, 2=N_ELASTIC, 18=N_FISSION, 102=N_GAMMA
Maximum relative error: 8.809924e-08

The error (on the order of single-precision floating point epsilon) confirms this is the case.

A.5.3 FISSION SPECTRUM SAMPLING

When sampling the energy of a daughter neutron from a fission event, Shift chooses between prompt and
delayed spectra. What do these distributions look like? Is the data consistent?

A–147

from nemesis import Std_DB, make_view, make_const_view
from robus import Library, data_path
from physica import calc_micro_xs
from omnibus.db.validator import mt_to_str, to_mt
import matplotlib.pyplot as plt
import numpy as np

%matplotlib inline
from exnihilotools.matplotlib import screen_style
screen_style()

/rnsdhpc/code/install/Exnihilo/python/omnibus/__init__.py:93: UserWarning: Version␣
↪→mismatch between 'exnihilotools' and 'omnibus' packages: 6.3.pre-b10 (branch 'omnibus-
↪→doc' #98d73c8e on 2020MAR11) (at /rnsdhpc/code/build/Exnihilo-examples/Exnihilo/
↪→packages/Nemesis/python/exnihilotools/__init__.py) is not the same as 6.3.pre-b10␣
↪→(branch 'fix-origen-install' #b3af8ef1 on 2020MAR06) (at /rnsdhpc/code/install/Exnihilo/
↪→python/omnibus/__init__.py); This is probably because of a PYTHONPATH error and may␣
↪→cause unexpected failures on import
UserWarning)

library = Library(Std_DB.from_dict({
'ce_lib_path': data_path("ce_v71"),
'gamma_production': True,

}))

nucl = library.load_nuclide_n(92235, 300.)

reactions = dict([(v.lower(), nucl.get_reaction(to_mt('N_' + v)))
for v in ("NU", "NU_DELAYED", "NU_PROMPT")])

for (k, rxn) in reactions.items():
plt.loglog(rxn.energy, rxn.xs, label=k)

plt.legend(loc='best');

A–148

Do the reactions share an energy grid?

print({k: len(reactions[k].energy) for k in sorted(reactions)})
print(np.allclose(reactions['nu'].energy, reactions['nu_prompt'].energy))

{'nu': 79, 'nu_delayed': 6, 'nu_prompt': 79}
True

Do the reactions balance? Since the ‘delayed’ component is on a separate energy grid, it must be interpolated.

rxn = reactions['nu_delayed']
egrid = np.array(reactions['nu'].energy)
interp_delayed = np.empty(egrid.shape, dtype='f4')
calc_micro_xs(rxn, make_const_view(egrid), make_view(interp_delayed))

xs_total = np.array(reactions['nu'].xs)
xs_prompt = np.array(reactions['nu_prompt'].xs)
xs_delayed = np.array(interp_delayed)
print(np.allclose(xs_total, xs_prompt + xs_delayed))

True

A.5.3.1 Examine fission-related reactions

Which of the reactions have kinematics data?

fission_mts = set([18,19,20,21,38] + list(range(450, 461)))
fission_mts &= set(nucl.get_mts())
for mt in sorted(fission_mts):

rxn = nucl.get_reaction(mt)
print(mt_to_str(mt), "has collision" if rxn.has_collision else "")

A–149

18=N_FISSION has collision
452=N_NU
455=N_NU_DELAYED has collision
456=N_NU_PROMPT
459=N_FISS_YIELD

Examine the fission spectrum:

rxn = nucl.get_reaction(459)
plt.loglog(rxn.energy, rxn.xs, '.b-');

A.5.4 KERMA DATA SPLICING THROUGH AMPX

Shift supports reading AMPX multigroup files into its CE transport routines for use in reaction rates etc.
Note that when splicing AMPX data through the python interface, it is necessary to load the build_library
function from physica rather than calling the Library constructor.

from nemesis import Std_DB
from robus import Library, data_path
from physica import build_library
from omnibus.db.validator import mt_to_str, to_mt

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from exnihilotools.matplotlib import plot_multigroup, screen_style, grid
screen_style()

library = build_library(Std_DB.from_dict({
'ce_lib_path': data_path("ce_v71"),
'gamma_production': False,

(continues on next page)

A–150

(continued from previous page)

'splice_ampx_db': {
'reactions': [to_mt(k) for k in "N_KERMA P_KERMA".split()],
'xs_library': "/usr/local/scale/kerma/scale.rev11.xn27g19v7",
'orig_zaid_p': [4000],
'subs_zaid_p': [4009],
},

}))

/rnsdhpc/code/install/Exnihilo/python/omnibus/__init__.py:93: UserWarning: Version␣
↪→mismatch between 'exnihilotools' and 'omnibus' packages: 6.3.pre-b10 (branch 'omnibus-
↪→doc' #98d73c8e on 2020MAR11) (at /rnsdhpc/code/build/Exnihilo-examples/Exnihilo/
↪→packages/Nemesis/python/exnihilotools/__init__.py) is not the same as 6.3.pre-b10␣
↪→(branch 'fix-origen-install' #b3af8ef1 on 2020MAR06) (at /rnsdhpc/code/install/Exnihilo/
↪→python/omnibus/__init__.py); This is probably because of a PYTHONPATH error and may␣
↪→cause unexpected failures on import
UserWarning)

With the the KERMA data loaded, it can now be plotted:

nucl = library.load_nuclide_n(4009, 300.)
rxn = nucl.get_reaction(to_mt('N_KERMA'))
xs = np.asarray(rxn.xs)
assert xs[-1] == xs[-2]
plt.loglog(rxn.energy, xs, drawstyle='steps-post')
grid(plt.gca());

nucl = library.load_nuclide_p(4000)
library.flush_warnings()
rxn = nucl.get_reaction(to_mt('P_KERMA'))

(continues on next page)

A–151

(continued from previous page)

xs = np.asarray(rxn.xs)
assert xs[-1] == xs[-2]
plt.loglog(rxn.energy, xs, drawstyle='steps-post')
grid(plt.gca());

A.6 SUPPLEMENTAL

A.6.1 USING THE H5SH TOOL

To enter the h5sh shell, just run h5sh HDF5_FILE. Here is an example of what it looks like:

$ h5sh kcode_sce.out.h5
kcode_sce.out.h5:/> l
comp Group (6 items)
metadata Group (8 items)
model Group (4 items)
physics-ce Group (5 items)
response Group (2 items)
shift Group (5 items)
source Group (3 items)
system Group (4 items)
tally Group (9 items)
kcode_sce.out.h5:/> cd physics-ce
kcode_sce.out.h5:/physics-ce> prompt "> "
db log mixtures peak_memory timers
> ls
db log mixtures peak_memory timers
> dump log
/physics-ce/log : scalar |S435
>>> Creating default boundary mesh from (-5 -5 -5) to (5 5 5) for RTK Core

(continues on next page)

A–152

(continued from previous page)

geometry
>>> Loading CE library /usr/local/scale/hpcdata/ce_v7.0_endf.h5
*** The following nuclide IDs were remapped due to missing neutron data
*** Remapped 1 nuclide IDs: 6012->6000
>>> Corrected total xs in probability table data: u-234 @ 293K, u-234 @
565K, u-234 @ 300K, u-235 @ 293K, u-235 @ 565K, u-235 @ 300K, u-238 @ 293K,
u-238 @ 565K, u-238 @ 300K

> cd ../tally
> ls
cyl description fission_site kcode medium mytally peak_memory timers xs
> cd mytally
> ls
description max_encountered_bins mesh_stat mesh_x mesh_y mesh_z multiplier_descs␣
↪→multiplier_names normalization num_histories total volumes
> ls -l
description Dataset (S: scalar)
max_encountered_bins Dataset (L: scalar)
mesh_stat Dataset (O: 2)
mesh_x Dataset (d: 11)
mesh_y Dataset (d: 11)
mesh_z Dataset (d: 11)
multiplier_descs Dataset (O: 2)
multiplier_names Dataset (O: 2)
normalization Dataset (d: scalar)
num_histories Dataset (d: scalar)
total Dataset (d: 10x10x10x2x2)
volumes Dataset (d: 10x10x10)
> attr
type=mesh
> dump mesh_x
/tally/mytally/mesh_x : 11 float64
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]
> dump -o tally.txt total
> cd ../kcode/keff
cd: /tally/kcode/keff is not a group
> cd ../kcode/
> ls
entropy entropy_crossover_cycle entropy_mesh keff keff_estimators
mesh_cycle mesh_moment mesh_stat moments statistics_pass
> print keff
h5sh: print: command not found
> help
Available commands:
attr - Print attributes of the current group
cd - Change the current HDF5 group
dump - Print the contents of a dataset
exit - Exit h5sh
filename - Print the name of the file being examined
help - List available commands
l - Alias for 'ls -l'
ls - List items in the current group

(continues on next page)

A–153

(continued from previous page)

prompt - Get or change the terminal prompt
pwd - Print the path to the current HDF5 group
> dump keff
/tally/kcode/keff : 2 float64
Attributes: {'DIMENSION_LABELS': array([b'stat'], dtype=object)}
Chunked: (2,)
[1.00356147e+00 1.52605295e-05]
> exit

A.6.2 RUNNING OMNIBUS THROUGH PYTHON

Because the Omnibus front end is simply a Python script, it is possible to drive it through another Python
script. For example, the shell command

$ omnibus-run nyoka.omn

can be written as the following python script:

from omnibus.scripts.omnibus_run import run

run(["nyoka.omn"])

The first argument to run takes a list, because multiple files can be passed to the input just like with the
scripted front end. An additional and very useful feature is that a python function can also be passed to
modify the database, just like a Python script can be passed through the command line:

from omnibus.scripts.omnibus_run import run

def change_name(db):
db['problem']['name'] = "Something else"

run(["nyoka.omn", change_name])

This opens up exciting possibilities of automating scaling studies and parameter studies. To this end, a helper
class is available that can drive multiple Omnibus executions with variable parameters. Here is an example
that modifies an Omnibus input base-input.omn, loops over different numbers of compute cores and
particles per cores, saves the output to subdirectories inside weak-scaling/ppcnnnnnn-npnnnn, and then
extracts a few different timers and transport diagnostics and writes them to weak-scaling/results.json.

from omnibus.scripts.omnibus_run import MultiRun

class ScalingRun(MultiRun):
inp = "base-input.omn"
fmt = "ppc{ppc:06d}-np{cores:04d}".format
basedir = "weak-scaling"

timers = {
'init_time': ("shift", "shift::sensitivity::Processor.initialize"),
'transport_time': ("shift", "shift::DR_Source_Transporter.solve"),
'rebalance_time': ("shift", "shift::Fission_Sourcer.complete"),
'comm_time': ("shift",

(continues on next page)

A–154

(continued from previous page)

"shift::sensitivity::Processor.communicate_tallies"),
'total_time': ("shift", "shift::KCode_Solver.solve"),
}

db_entries = {
'comm_iters': ('SHIFT','DIAGNOSTICS','sensitivity_comm_iters'),
'memory': ('SHIFT','MEMORY','VmHWM'),
'particles': ('SHIFT','DIAGNOSTICS','particles_transported'),
}

def update(self, db, cores, ppc):
db['run'] = {

'_type': "pbs",
'ppn': ppn,
'nodes': 1,
'walltime': "2:00:00",
'when_email' : "", # never
'name': self.fmt(**locals()) + "-shift",
}

Set number of particles per core per cycle
db['shift']['kcode']['npk'] = ppc * cores

def main():
with ScalingRun() as run:

Scale up to 8 cores
for cores in [1,2,4,8]:

Vary particles per core
for ppc in [10,100,1000]:

run(cores=cores, ppc=ppc)

main()

The resulting JSON file looks something like this:

{"comm_time":[0.0601811408996582, 0.06244254112243652,
0.06316995620727539, 0.09857296943664551, 0.1872391700744629,
0.5450944900512695, 0.1900339126586914, 0.4031996726989746,
0.3892052173614502, 0.2579929828643799, 0.6250407695770264,
1.1602895259857178],

"cores":[1, 1, 1, 2, 2, 2, 4, 4, 4, 8, 8, 8],
"memory":[769736, 878304, 1939864, 807824, 916060, 1967500, 816452,

925144, 1983192, 815940, 925492, 1998944],
"ppc":[10, 100, 1000, 10, 100, 1000, 10, 100, 1000, 10, 100, 1000],
}

which can be plotted or analyzed easily using Pandas:

import json
import pandas as pd

with open("weak-scaling-twogroups/results.json") as f:

(continues on next page)

A–155

(continued from previous page)

results = pd.DataFrame.from_dict(json.load(f))
results.index = pd.MultiIndex.from_arrays([

results.pop('cores'), results.pop('ppc')])
results.sort_index(inplace=True)
results['comm_time'].unstack('cores').plot()

To use this functionality, the user must subclass the MultiRun class and provide:

• a base input filename (“box.omn” in the attached example),

• a formatter for the name of the subdirectories for each file to run (using the new Python-style keyword
formatting),

• the root directory of the output files (under which the subdirs will be created, as well as the ‘results.json’
summary)

• a database of timer names to be recorded from each run,

• a database of DB entries to be recorded from each run, and

• an update method that modifies the problem input based on the keyword arguments specified. (The
first two arguments of this function must be self for the class and db for the problem database.)

The class is then instantiated as a context manager and called with the keyword arguments specified in the
update method.

with WeakScalingRun() as run:
for ppn in range(1,32+1):

run(instance=0, nodes=1, ppn=ppn)

It will record all the keywords, the timers, and the DB entries into a JSON file, and will reuse existing output
if it is there. If the program aborts from a keyboard interrupt or a failed run, then the context manager will
still output all the results it has gathered.

A–156

Appendix B. FILE FORMAT SPECIFICATIONS

B–2

Appendix B. FILE FORMAT SPECIFICATIONS

Omnibus uses multiple file formats for input (e.g., geometry definitions and material properties) and output
(e.g., Denovo flux HDF5 files).

B.1 DENOVO OUTPUT SPECIFICATION

Denovo uses parallel HDF5 to write multiple sets of data that correspond to its interpreted input and the
solution output. Since it supports both 2D and 3D problem definitions, the mesh cell–based dimensions will
change depending on the problem type. Additionally, depending on the problem input parameters, some of
the fields may be absent. Notably, if the PN order is zero, then the solution is isotropic, and no current field
will be output.

Note: Since Denovo uses column-major ordering for meshes, ‘x’ is always the fastest varying axis. Thus the
HDF5 (row-major) dimensions for cells will be (Z,Y,X) or (Y,X).

Tip: Denovo uses the HDF5 Dimension Scale API24 to write dimension labels to its output. If you review
these (e.g. with h5dump -A file) you can be sure of the significance of the different dimensions.

B.1.1 ROOT LEVEL DESCRIPTION

Datasets:

Name Type Dims Description

mesh_x double X + 1 Mesh edges along the x axis.
mesh_y double Y + 1 Mesh edges along the y axis.
mesh_z double Z + 1 Mesh edges along the z axis.
group_bounds_n double NN+1 Neutron group boundaries, or empty if no neutron groups

are being solved.
group_bounds_p double NG+1 Photon group boundaries, or empty if no photon groups are

being solved.
flux double G,Z,Y,X Scalar fluxes for each group in each mesh cell.
source double G,Z,Y,X Volumetric source term if an isotropic fixed source was used.
uncflux double G,Z,Y,X Uncollided flux if used.
current double G,Z,Y,X,3 Currents (first scalar flux moment).
block u short Z,Y,X KBA block index for each cell.
matids int Z,Y,X Global mixture ID.
mixtable COO M Global mix table.

Groups:

Name Description

metadata Metadata about the problem, system, and Exnihilo version
used to create the output file.

24 https://www.hdfgroup.org/HDF5/doc/HL/RM_H5DS.html

B–3

https://www.hdfgroup.org/HDF5/doc/HL/RM_H5DS.html

All quantities follow the standard nuclear engineering practice of being averaged over space and integrated in
energy and angle.

The mix table stores mixture IDs as rows, and it stores composition IDs/pure matids as columns. For parallel
problems, the mix table is essentially the concatenation of all the domain-local mix tables, but with pure
materials placed in the beginning rows of the table. Thus, the mix table may have duplicate rows if run in
parallel.

B.2 HDF5 MESH MODEL SPECIFICATION

Denovo accepts an explicit problem model definition via an HDF5 input file. Since it supports both 2D and
3D problem definitions, the mesh cell–based dimensions will change depending on the problem type.

Note: Since Denovo uses column-major ordering for meshes, ‘x’ is always the fastest-varying axis. Thus
the HDF5 (row-major) dimensions for cells will be (Z,Y,X) or (Y,X).

B.2.1 ROOT LEVEL DESCRIPTION

Datasets:

Name Type Dims Description

mesh_x double X + 1 Mesh edges along the x axis.
mesh_y double Y + 1 Mesh edges along the y axis.
mesh_z double Z + 1 Mesh edges along the z axis. (For a 2D problem, this field

should not be present.)
matids int Z,Y,X Material IDs in each mesh cell. (For a 2D problem, dimen-

sions are Y,X.)
mixtable COO M,P Sparse matrix representation: M is the number of mixtures,

P the number of “pure” materials (original problem matids)
source G,Z,Y,X Optional volumetric source definition.

The mix table is stored in Coordinate matrix format, a structure of (‘row’, ‘col’, ‘val’) elements with types
(int, int, double), respectively. These datasets are written consistently with the Denovo Output Specification
(page B–3) output specification so that it can be used as a restart file.

Groups:

Name Description

volsrc Optional cell-based volume source definitions.
ptsrc Optional point source definitions. Only applicable to 3D.
metadata Optional metadata about the version of Omnibus used to

generate the input file.

B–4

B.2.2 VOLSRC GROUP DESCRIPTION

Datasets:

Name Type Dims Description

ids int Z,Y,X Spectrum IDs in each mesh cell.
strength double Z,Y,X Source strength in each cell.
spectra double S,G The row index (zero-based) in the table is the spectrum ID;

the row itself is a normalized spectrum for all G groups.

B.2.3 PTSRC GROUP DESCRIPTION

Datasets:

Name Type Dims Description

mesh_point double P,3 Point source locations. Each row is a separate point.
strength double P Point source strengths.
spectra double P,G Normalized spectra. Each row is the normalized spectrum

for all G groups corresponding to the point at that row index.

B.3 RTK XML INPUT SPECIFICATION

The RTK XML geometry input specification will be documented once the format is finalized.

B.4 XS XML INPUT SPECIFICATION

The XML cross section input specification will be documented once the format is finalized.

B–5

	Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Omnibus execution
	Python bindings
	Post-processing tools

	Front End Interface
	Running Omnibus
	Omnibus ASCII Input Format
	Omnibus input and output
	Errors, warnings, and other messages
	Command line tools

	Omnibus Input Description
	Omnibus input file contents
	Problem attributes: [PROBLEM]
	Execution: [RUN]
	Output options: [OUTPUT]
	Model definition: [MODEL]
	MCNP input: [MODEL=mcnp]
	SCALE input: [MODEL=scale]
	Geometria input: [MODEL=geometria]
	Reactor ToolKit input: [MODEL=rtk]
	Brick mesh input: [MODEL=mesh]
	Geant4 input: [MODEL=geant]
	SWORD input: [MODEL=sword]
	DAGMC input: [MODEL=dagmc]
	VERA input: [MODEL=vera]
	Particle source definitions: [SOURCE]
	Physics engines: [PHYSICS]
	Continuous-energy physics: [PHYSICS=ce]
	Multigroup physics: [PHYSICS=mg]
	Compositions: [COMP]
	Responses: [RESPONSE]
	Tallies: [TALLY]
	Shift Monte Carlo solver: [SHIFT]
	Denovo deterministic solver: [DENOVO]
	ORIGEN depletion solver: [DEPLETION]
	Hybrid methodology: [HYBRID]
	Pre-execution utilities: [PRE]
	Post-processing: [POST]

	Geometria Input Description
	Geometria input file contents
	Universe definitions: [UNIVERSE]
	Shape definitions: [UNIVERSE][SHAPE]

	References
	Acknowledgments
	Examples
	Visualization
	Denovo
	Multigroup data exploration
	Shift
	CE data
	Supplemental

	File format specifications
	Denovo Output Specification
	HDF5 Mesh Model Specification
	RTK XML Input Specification
	XS XML Input Specification

